TITLE

INSTITUTION
REPORT NO
PUB DATE NOTE

AVAILABLE FROM

PUB TYPE

EDRS PRICE
DESCRIPTORS

Doctoral Scientists and Engineers: A Decade of Change. Special Report. Surveys of Science Resources Series.
National Science Foundation, Washington, D.C. Div. of Science Resources Studies. NSF-88-302
Mar 88
l19p.; Graphs, charts, and some small print may not reproduce well.
National Science Foundation, Forms \& Publications Unit, 1800 G Street NW, Rin. 232, Washington, DC 20550 (free while supply lasts).
Reports - Descriptive (14i) -- Tests/Evaluation Instruments (160)

MFO1/PCO5 Plus Postage.
College Science; *Doctoral Programs; *Educational Change; *Employment Projections; *Employment Statistics; Engineering Education; Females; Government Role; *Graduate Study; Higher Education; Minority Groups; *Policy Formation; Salaries; Science Education
National Science Foundation

ABSTRACT

Many feel that scientists and engineers play a critical role in expanding the frontiers and knowledge of science and engineering and in educating and training future generations of scientists and enginecrs. They may do so by providing leadership in areas of national interest including efforts to increase the international competitiveness and strengthen the defense of the United States. The doctoral science and engineering work force has experienced major changes over the period from 1975-1985. The changes have included increases in the number employed, a relative shift to industrial employment, a relative decline in the importance of teaching and a sharp increase in the number of womel with doctorates. This report analyzes the major changes that have taken place over the 1975-85 decade among doctoral scientists and engineers and provides a set of trend data pertaining to this population. Discussions include: (1) "Employment of Doctoral. Scientists and Engineers"; (2) "Character of Science and Technology"; (3) "Age Profiles"; (4) "Sa?.aries"; and (5) "Women and Minorities." Appendices include technical notes, detailed statistical tables, and a reproduction of the 1985 survey questionnaire. (CW)

[^0]

surveys of science resources series national science foundation

other science resources publications

NSF No. Price

Science Resources Studies Highlights

R\&D Funds"Reai Growth in Academic R\&D Spending Slowed to 2% in FY1987, Down from 9% in 1986"88-314
"Economic Outlook and Corporate Mergers Dampen Growth in Company R\&D" 88-311
"Industrial Biotechnology R\&D Periormance Increased an Estimated 17 Percent in 1987 to $\$ 1.4$ Billion" 88-306
"Real Increase in 1988 National R\&D Funds Estimated at Lowest Rate in Eleven Years" 88-303
S/E Personnel
"Foreign Citizens Account for Most Growth in Graduate Science and Engineering Enrollment" 88-
"More Recent Science and Engineering (S/E) Graduates Finding S/E Jobs" 88-310
"Services Led in Private Industry Growth in Science/Engineering Jobs but Manufacturing Rebounds and Tops 1 Million in 1987" 88-304
\qquad
Detailed Statistical Tables
R\&D Funds
Academic Science/Engineering: R\&D Funds, Fiscal Year 1986 88-312
Federal Support to Universities, Colleges, and Selected Nonprofit Institutions: Fiscal Year 1986 87-318
Federal Funds for Research and Development: Fiscal Years 1986,1987, and 1988, Volume XXXVI87-314

doctoral scientists and engineers: a decade of change

surveys of science resources series national science foundation

Availability of Publications

Those publications marked with a price shoulde be obtained directly from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Where no price is listed, single copies may be obtained gratis from the National Science Foundation, Washington, D.C. 20550.

Telephonic Device for the Deaf
The National Science Foundation (NSF) has Telephonic Dovice for the Deaf (TDD) capability which enables individuals with hearing impairment to communicate with the Division of Personnel and Management for information relating to NSF programs, employment, or general information. The TDD number is (202) 357-7492.

Suggested Citation
National Science Foundation, Doctoral Scientists and Engineers: A Ircade of Change (NSF 88-302)(Washington, D.C., 1988).

foreword

Scientists and engineers with doctorates play a critical role in expanding the frontiers and knowledge of science and engineering and in educating and training future generations of scientists and engineers. They do so by providing leadership in areas of critical national interest; these include efforts to increase our international competitiveness and strengthen our national defense.

The doctoral science and engineering (S / E) work force has experienced major changes over the 1975-85 decade. In addition to increases in the number eniployed, these changes include a relative shift to industrial employment, a relative decline in the importance of teaching, and a sharp increase in the number of women with doctorates.

This report has two main objectives: (1) to analyze the major changes that have taken place over the 1975-85 decade among doctoral scientists and engineers, and (2) to provide a relatively comprehensive set of trend data pertaining to this population.

William L. Stewart
Director, Division of
Science Resources Studies
Directorate for Scientific,
Techological, and International Affairs

March 1988

acknowledgments

This report was developed within the Division of Science Resources Studies, Surveys and Analysis Section, by Melissa J. Lane, Economist, Scientific and Technical Personnel Characteristics Studies Group (STPCSG); under the direction of Michael F. Crowley, Study Director, STPCSG. John A. Scopino, Senior Science Resources Analyst within the Study Group, contributed to the analysis, prepared the Technical Notes, and assisted in several other aspects of the study.
Guidance and review were provided by Charles H. Dickens, Head, Surveys and Analysis Section; and William L. Stewart, Director, Division oí Science Resources Studies.

general note

Because of changes in definitions and in other aspects of survey conduct and operations, data published in this report for any year are not strictly comparable with estimates published in earlier years. Caution should therefore be exercised in using published data to develop historical trends. The data in this report have, however, been adjusted to minimize these differences and are suitable for use in analyzing historical trends.

contents

Page
Executive Summary ix
Section:
I. Employment of Dortoral Scientists and Engineers 1
Levels and Trends 1
Field Mobility 3
Labor Market Conditions 4
II. Character of Science and Technology 7
Sector 7
Work Activities 8
The Industrial Perspective 9
The Academic Perspsctive 12
Sectoral Mobility 14
III. Age Profiles 17
IV. Salaries 19
V. Women and Minorities 21
Women 21
Racial Minorities 24
Hispanics 26
Appendixes:
A. Technical Notes 31
B. Detailed Statistical Tables 37
C. Reproduction of 1985 Survey Questionnaire 109

executive summary

Employment of doctoral scientists and engineers increased from 256,100 in 1975 to 400,000 in 1985; this change represents an annual growth of 4.6 percent. Over roughly the same period, employment of scientists and engineers at all degree levels rose at an annual rate of 7 percent; in comparison, overail U.S. employment increased at an aurual rate of 2 percent. Among Ph.D. scientists, employment of computer specialists increased more than three times faster than for all doctoral-level scientists (15.5 percent per year versus 4.6 percent). For doctoral engineers, employment increased at an annual rate of 4.5 percent. Annual growth rates am.ong engineering disciplines ranged from 6.6 percent for aeronautical engineers to 2.9 percent for chemical engineers.

In 1985, 95 percent of Ph.D. scientists and 80 percent of engineers were employed in a field coincident with their field of degree. These proportions have remained relatively constant since 1975 . Computer specialists are, however, a notable exception to this generally high rate of coincidence between employment and degree fields. For example, in 1985, only about 18 percent of those employed as computer specialists had earned their doctorate in computer science. Another 17 percent held their degree in mathematics while 11 percent had physics degrees.

Over the 1975-85 decade, doctoral employment increases varied substantially by sector. In the industrial sector, employment rose at an annual rate of 6.9 percent, compared to 3.6 percent in educational institutions. Underlying these different growth rates, has been a pronounced shift in relative employment from academia to industry over the 10 -year period. In 1985, 53 percent
were in academia, down from 58 percent ten years earlier. In industry, the proportion rose from 25 percent in 1975 to 31 percent in 1985.

The distribution of work activities of doctoral scientists and engineers changed over the decale. The shifts in reported w.ik activities reflect changes both in employment sector and the activity patterns within these various sectors. In general, the proportion of doctorates citing research and development as their major activity remained constant, while the proportion citing teaching and management declined. Activities showing increased relative importance include sales, professional services, and production and related activities (e.g., operations and quality control).
Sectoral mobility patterns of doctoral scientists and engineers have been mixed over the 1975-85 period. While generally, there has been little movement into or out of academia, there have been substantial movements between government and industry. Inflows to industry have exceeded the sector's outflows.
The average age of those in the doctoral science and engineering (S / E) work force has increased over the 197585 decade. \ln 1975, 25 percent were under age 35 and only 14 percent were 55 or older. By 1985, however, 14 percent were under 35 , and 19 percent were 55 or older. Those in academia are, on average, older than their colleagues in industry.
Younger doctoral scientists and engineers are much more likely than their senior colleagues to work in research and development, especially basic research. Among those doctorates who report research and development as their major activity, 23 percent were under 35 , among
those specifically reporting basic research, 27 percent were 35 or younger. Doctorates reporing teaching as their major activity showed age profiles substantially different from those in research and development: in 1985, only 9 percent were under 35 while 24 percent were 55 or older.
The median annual salary of Ph.D. scientists and engineers rose faster than the average weekly earnings in nonagricultural industries over the decade. It did not, however, increase as quickly as the Consumer Price Index (CPI). Salaries of doctoral scientists and engineers rose 93 percent ($\$ 23,200$ to $\$ 44,800$ between 1975 and 1985); in contrast, average weekly earnings in nonagricultural industries rose 83 percent, while the CPI increased about 100 percent. Engineers, on average, reported salaries about $\$ 10,000$ per year above those for scientists ($\$ 52,400$ versus $\$ 42,500$). S/E doctorates employed in indusiry averaged the highest annual salaries: in 1985, industry sector salaries were $\$ 12,000$ per year above those in academia ($\$ 52,000$ versus $\$ 40,000$).

The number of employed women holding S/E doctorates more than doubled between 1975 and 1985, rising from 22,000 to more than 58,000 . This increase represents an annual growth rate of more than 10 percent; the comparable annual increase for men was about 4 percent. This growth rate primarily reflects the faster rates of degree production for women as well as the relatively small number of women in this population.

Despite more rapid growth, women accounted for only 15 percent of all employed doctoral scientists and engineers in 1985; this fraction was, however, up from about 9 percent in 1975. Among fields, the representation of women varies from 2 percent of engineers to 32 percent of psychologists.
The number of employed doctoral scientists and engineers who were members of racial minority groups rose from 16,500 in 1975 to 41,000 in 1985. Almost all (85 percent) of this increase is attributed to Asians, whose numbers rose from 14,000 to 35,000 . In 1985, Asians accounted for 8.6 percent of all employed doctoral scientists and engineers, up from 5.3 percent in 1975. During the same period, the number of black doctoral scientists and engineers rose from 2,500 (or 1.0 percent of all employed S/E doctorates) to 5,700 (1.4 percent). The number of native Americans rose from about 200 to 500 between 1975 and 1985.

There were about 5,900 Hispanic ${ }^{1}$ doctoral scientists and erigineers employed in the United States in 1985, up from 2,000 10 years earlier. In 1985, Hispanics accounted for 1.5 percent of total doctoral S/E employment, as compared to 0.8 percent in 1975.

[^1]
section i

employment of doctoral scientists and engineers

levels and trends

Emp. Jyment of doctoral scientists and engineers rose from 256,000 in 1975 to 400,000 in 1985, an increase of 56 percent or 4.6 percent per year. Over roughly the same period, employment of scientists and engineers at all degree levels increased at an annealate of 7 percent, while overal! • . . loyment grew at an ann. cent. ${ }^{2}$

[^2]In absolute terms, the employment increase between 1975 and 1980 was about the same as that between 1980 and 1985. This relatively even distribution in absolute growth resulted from a relatively constant yearly output of new S/E doctorates from U.S. colleges and universities. New doctorates from U.S. universities represent the major source of additions to the Ph.D. S/E work force. Over the 1974-84 decade, the number of Ph.D.s awarded in scier:ee and engineering was between 17,000 and 18,000 each year. Annual losses in the doctoral S/E work force caused by death and retirement averaged only about 1 percent. In 1985, only
about 16,000 doctoral scientists and engineers were retired.
In 1985, scientists at the doctoral level outnumbered engineers by about five to one. This ratio has been essentially unc'.anged since 1975. Within both science and engineering, however, employmen. gruwth rates varied considerably by field (chart 1). Among scientists, employment of computer specialists rose at the highest annual rate (16 percent); this rate was more than three times the rate for all scientists (5 percent). Grewth among the various engineer. g fields varied within a narrower range over the 1975-85 decade. Overall employment of doctoral en-

gineers increased at an annual rate of 5 percent, by field, however, growth ranged from 7 percent per year for aeronautical/dstronautical engineers to 3 percent for chemical engineers.

Differences in growth rates altered the field distributions of the science doctoral work force over the 1975-85 decade (chart 2). Most notably, the proportion who were employed as physical and mathematical
scientists declined, while the proportions employed as computer specialists, psychologists, and social scientists increased. In contrast, there were only relatively modest shifts among engineering fir lds.

field mobility

Degree field versus employment field. If a large proportion of those employed in a field also hold their doctorate in that field, it may be an indication that entry is rigid and often dependent upon field of degree. Conversely, a low proportion indrcat s flexible entry and a much more eclectic educational mix.

Across most S/E fields at the doctoral level, a substantial proportion of those employed in a field also hold their degree in that field (table 1). For example, in 1985, more than 90 percent of doctorate-holders employed as chemists also held doctorates in this field. In five fields, however, less than one-half of those employed held coincident degrees. statistics (46 percent), medical sciences (46 percent), aeronautical'astronautical engineering (44 percent), systems design engineering (19 per-
cent), and computer specialties (18 percent). The educational backgrounds of those employed in these fields varied substantially. For example, among the 15,000 doctorateholders employed as computer specialists in 1985, 17 percent held doctorates in mathematics, 11 percent had Ph.D.s in physics, and 7 percent held psychology doctorates. Perhaps reflecting the limited skill transferability from field of training to uther Si'E fields, field coincidence patterns for the doctoral SiE work

Table 1. Proportion of doctorates whose field of degree is the same as their field of employment: 1985

Field	Percent
Total science.	95
Physical sciences	92
Chemistry	92
Physics	88
Mathematical sciences	87
Mathematics	86
Statistics	46
Computer science	18
Environmental sciences	66
Earth sciences	63
Oceanography	57
Atmospheric sciences	54
Life sciences	83
Biological sciences	82
Agricultural sciences	77
Medical sciences	46
Psychology	94
Social sciences	92
Economics	95
Sociology..	95
Other social sciences.	77
Total engineering	80
Aeronautical/astronautical	44
Chemical	88
Civil	84
Electrical/electronics	64
Materials science	60
Mechanical	66
Nuclear	58
Systems design	19
Other engineering.	38

SOURCE. National Science Foundation, SRS, based on table B-27
force have remained relatively constant since 1975. Field coincidence, however, is affected by a number of factors. These factors include (a) narrowness of field definition, (b) extent to which new knowledge is readily classified in existing fields, (c) the responsiveness of Ph.D. programs to new fields or specialties, and (d) changes in supply/demand conditions.

Changes in employment field. Mobility among fields most often results from changing supply and utilization balances. The doctoral S/E
work force is not as sensitive to such supply/demand changes as are other populations (e.g., the overall S/E work force or all professional and related occupations) partially because of the substantial commitments of resources, time, and mental and emotional energy required to pursue in-depth study of a particular field. Field mobility among doctoral scientists and engineers thus is limited. The mobility that does occur is most often among fields where related skills and training are required, e.g., chemical engineering and chemistry. Field mobility may be explored from two perspectives. The first is the propensity for doc-torate-holders employed in a particular field to remain in that field.
A majority of those doctoral scientists and engineers employed in both 1975 and 1985 were working in the same field during the two periods. The highest propensity to remain in the same field occurred in psychology and economics. Among those working in 1975, 94 percent of doctoral psychologists and 92 percent of doctoral economists continued to be employed in those fields in 1985. Among other fields, proportions ranged from 54 percent of Ph.D. atmospheric scientists to 89 percent of Ph.D. sociologists. Only in systems design engineering did a relatively low fraction (28 percent) remain in the field over the 10 -year period. Those who had been employed in this field in 1975 had moved into such fields as computer specialties, electrical engineering, aeronautical engineering, mathematics, and physics by 1985.
Field mobility can also be assessed by determining that fraction of current employment in a particular field accounted for by those who were employed in that field in an earlier period. Fields in which a relatively lower fraction of current employment is accounted for by those who have not changed fields may indicate a demand for that field which outpaces the supply.
Among all science fields (except computer specialties), mr re than
three-fifths of employment in 1985 is made up by those who were in these fields in 1975. However, only 35 percent of doctoral computer specialists working in the field in 1985 were also in this field 10 years earlier. The background of the remaining doctoral personnel employed as computer specialists varied considerably: about 14 percent had been mathematicians, 8 percent were physicists, 6 percent had been systems design engineers, and 4 percent worked as electrical/electronics engineers.
The pattern also varied among engineering fields. More than 78 percent of civil engineers employed in 1985 were also working in this field in 1975; for aeronautical/astronautical engineers, however, only 51 percent had been in the field 10 years before. The lowest fraction again occurred in systems design engineering. In 1985, only about 25 percent of employment in this field was accounted for by those in the same field in 1975. The remainder had been in fields suck as mathematics and electrical engineering in 1975.

labor market conditions

Labor market conditions for doctoral scientists and engineers remained generally favorable over the 1975-85 decade and seemed little influenced by changes in economic conditions. Unemployment rates, for example, remained low over the 10 year period. In 1985, the unemployment rate for doctoral level scientists and engineers was nominal at 0.8 percent (1.0 percent in 1975). By comparison, for the overall U.S. work force, unemployment ranged from a high of 9.7 percent in 1982 to a low of 5.8 percent in 1979; in 1985, it was 7.2 percent. ${ }^{3}$ For scientists and engineers at all educational levels, the

[^3]unemployment rate declined from 3.4 percent in 1976 to 1.6 percent in 1986.

Unemployment rates varied by field; the overall rate for engineers (0.5 percent) was below that for scientists (0.9 percent). Among doctoral engineers, the unemployment rate ranged from virtually nil for mechanical and nuclear engineers to 1.8 percent for chemical engineers. Among scientists, the rates varied from virtually zero for computer specialists to 2.1 percent for sociologists and anthropologists.
Another indicator of the favorable conditions faced by the doctoral S / E work force is the S/E employment rate. The S/E employment rate measures the extent to which employed scientists and engineers have a job in science or engineering. Depending on the specific reasons for nonS/E employment, a low rate could be an indicator of underutilization. Factors relating to non-S/E employment include lack of available S/E jobs, higher pay for non-S/E employment, location, or preference for a job outside of science or engineering.
In 1985, the S / E employment rate for doctoral scientists and engineers was 91 percent; this rate was only slightly lower than the 94 -percent rate recorded in 1975. Over the 10 -year period the S / E emn'zyment rate fell somewhat for all fields, except chemistry and computer specialties where they were essentially unchanged. S/E employment rates varied by field (chart 3), with the rate for engineers (93 percent) above that for scientists (91 percent) in 1985. Among engineers, the lowest rate was recorded for chemical engineers (88 percent); the lowest rate for scientists was recorded for social scientists (80 percent).

character of science and technology

Research and development and teaching are the major activities of doctoral scientists and engineers. The number, proportion, and distribution of those engaged in these activities varies considerably by employment sector. Sectoral employment patterns of Ph.D. scientists and engineers, and the distribution of work activities within these sectors, are indicators of the character of the U.S. science and technology enter r rise, i.e, research and development, management, and production and related activities. This section examines the changes that have occurred over the decade in terms of overall sectoral employment and work activity patterns; it then focuses specifically on the changes that have taken place within the two largest employment sectors of doctoral scientists and engineers: industry and academia.

sector

Employment increases for doctoral scientists and engineers over the 1975-85 decade varied by sector with industry growing more rapidly than academia. In the industrial sector, employment of Ph.D. scientists and engineers increased at an annual rate of 6.9 percent, compared to 3.6 percent in academia, and 4.6 percent in all sectors combined (table 2). Industry growth reflects both a relative lack of opportunity in academia in some fields (e.g., social science) and strong industrial demand for other fields (e.g., computer science and engineering). Other factors contributing to the greater demand in industry include increased R\&D funding, relatively strong growth in those industries (especially high technology ones) that
employ large numbers of scientists and engineers, ar.d changes in occupational staffing patterns.

Table 2. Employment growth rates of doctoral scientists and engineers by sector of employment: 1975.85

Sector of employment	Annual growth rate	Employment change
Total	4.6%	144,400
Industry........	6.9%	61,100
Academia	3.6%	62,500
Federal		
Government ...	3.3%	62,500
Other'	4.7%	13,400

'includes hospitaisiclinics, nonprofit organizations, Statellocal governments, and all other employers. SOURCE: Natlonal Sclence Foundation, SRS; based on table B-4

There has been a pronounced shift from academia to industry in relative employment levels over the 197585 decade. The proportion of all doctoral scientists and engineers employed in industry rose from 25 percent in 1975 to 31 percent in 1985. Over the same period, the proportion employed in academia declined from 58 percent to 53 percent (chart 4).

The relative importance of each sector in providing employment opportunities for doctoral scientists and engineers is very field specific. Educational institutions employed about one-half of all Ph.D. scientists and engineers in 1985; by major field, however, proportions ranged from 80 percent of mathematical scientists to 33 percent or engineers. Industry,

with about one-third of all employed doctoral scientists and engineers in 1985, employed almost 60 percent of engineers but only 11 percent of mathematical scientists. Within major fields, the differences in relative employment are even more striking. These differences are discussed in more detail in the sections entitled "The Industrial Perspective" and "The Academic Perspective."

work activities

Work activities of doctoral scientists and engineers have shifted considerably since 1975. While the proportion citing research and development as their major activity has remained relatively constant, those citing teaching and management have declined. Consulting, sales, professional services, and production and related activities all increased in relative importance over the decade. Nonetheless, research and development (33 percent) and teaching (28 percent) continued to be the major work activities of Ph.D. scientists and engineers (chart 5).
The number of doctoral scientists and engineers citing research and development as their primary activity increased from 82,000 in 1975 to 133,000 in 1985, representing an increase of 5 percent per year. Almost 112,000 were primarily engaged in teaching in 1985, up from 91,000 since 1975. This increase, however, represents a growth rate of only 2 percent per year, considerably below the increase of about 5 percent per year noted for all employed Ph.D. scientists and engineers.
The largest relative increases were registered by those involved in sales, professional services, and production and related activities, such as quality control. Although rapidly growing, these activities employ relatively fewer doctoral scientists and engineers. For example, the number reporting their major area as production and related work increased

at an annual rate of more than 16 percent between 1975 and 1985. In 1985, however, only about 2 percent $(8,500)$ reported this type of work as their primary activity.

Changes in reported work activities for doctoral scientists and engineers reflect both sectoral shifts in employment and shifts in activity patterns within the various sectors. To gain a better understanding of the relationship of inter- and intrasectoral shifts, the following section discusses the two major employment sectors of doctoral scientists and engineers.

the industrial perspective

Industrial employment of doctoral scientists and engineers increased more rapidly than did the average growth rate across all employment sectors over the 1975-85 decade. This growth has been accompanied by shifts in reported work activities; these shifts indicate changes in the character of activities in the industrial sector.

The number of doctoral scientists and engineers in industry grew from about 65,000 in 1975 to 125,000 in 1985, an increase of about 7 percent per year. In 1985, almust one-third of all doctoral scientists and engineers worked in this sector, up from one-quarter in 1975.

Over the decade, employment of scientists in industry increased more rapidly than did that of engineers (7.5 percent versus 5.5 percent annual!y). Among major science fields, computer specialists showed the most rapid growth, rising from 1,400 to 8,400 , an increase of 19 percent per year. Other major fields showing increases significantly above the average included psychology and social sciences. Notably slower growth was recorded by physical scientists. Among engineering fields, the most rapid increase for the decade was in aeronautical/astronautical engineering, up at an annual average rate of 10 percent. Growth in this field reflects the increased emphasis on national defense. On the other hand, chemical, materisl science, and nuclear engineering rose at below average rates.

Variatirns in growth among fields altered the distributions of those doctoral scientists and engineers in industry. For instance, as a proportion of total doctoral employment in industry, the number of physical scientists declined from 34 percent in 1975 to 24 percent in 1985. (See table B-4 for actual changes in employment.) In contrast, computer specialists represented 2 percent of
the total in 1975 and more than 6 percent in 1985; the proportion who were psychologists rose from 6 percent to 12 percent. Roughly 80 percent of the increase in psychologists represents growth in the number of those who were self-employed. Reflecting the slower average growth
among engineers, their proporion in industry declined from 34 percent to 30 percent over the decade.

Industry's significance in providing employment opportunities for doctoral scientists and engineers varies considerably by field (chart 6). For example, about three-fifths of

computer specialists and engineers were in this sector, compared to only about one-tenth of either social or mathematical scientists. Regardless of field, however, the proportions of doctorates employed in industry in 1985 were above those for 1975.
As stated earlier, reported work activities of industrial doctoral scientists and engineers have shifted over the 1975-85 decade (chart 7). In general, those in 1985 were less likely than those in 1975 to report research and development or management as their major activity; they were, however, more likely to report sales, professional services, and production and related work. In part, these shifts reflect: (a) the drive to improve inćustrial competitiveness through enhanced quality control and other aspects of the production
process, and (b) the increasing numbers of psychologists providing professional services to individuals.
In 1985, about 39 percent of Ph.D. scientists and engineers in industry reported research and development as their major work. This fraction was down from 45 percent in 1975. Shifts in employment away from R\&D-intensive fields (e.g., physical sciences) and toward those fields that are not R\&D intensive (e.g., computer specialties) account for about one-half of the decline in this proportion. The remainder of the decline reflected changing activity patterns for each field. The R\&D intensity of major fields is shown in chart 8 . Among these fields, only those employed in life and social sciences showed an increase in R\&D intensity.

Doctoral scientists and engineers citing management (both of $R \& D$ and non-R\&D projects) as their major activity increased at an annual rate of only 2.4 percent over the 1975-85 decade. As a result of this relatively slower growth rate, the proportion reporting this activity declined from 35 percent in 1975 to 23 percent in 1985. If, however, management of research and development is separated from more general management, a very different pattern emerges. The number in $R \& D$ management rose at an annual rate of 3.4 percent while the number in general management remained virtually unchanged.

One of the fastest growing work activities within industry has been that reported as "sales or professional services." The number re-

porting this activity rose from 4,400 in 1975 to 20,000 in 1985, representing an average increase of 16 percent per year. Doctoral scientists and engineers in these activities rose from 7 percent to 16 percent.

Most of those reporting "sales or professional services" as their major work were providing professional services: 15,000 in 1985. Furthermore, almost three-quarters of thuse reporting this activity were psy-
chologists. Over the decade, psychology was one of the most rapidly growing fields within business and industry.
The number of doctoral scientists and engineers reporting their major
activity as production increased at an annual rate of 16 percent over the 1975-85 decad. . rising from 1,300 to 5,800 . As a proportion of total employment, those in production and related activities increased from 2 percent to almost 5 percent. Production and related activities include operations, maintenance, installation, quality control, testing, and evaluation.

the academic perspective

Employment of doctoral scientists and engineers in educational institutions reached 212,009 in 1985. This number was up from 149,000 in 1975 and represented an annual increase of 3.6 percent. In 1985, about 95 percent $(202,000)$ of those in academic institutions were in 4 -year colleges and universities. Of the remainder. 6,000 were employed in 2 -year colleges, and 3,600 worked in elementary and secondary schools. Over three-fifths of those doctorates in elementary or secondary schools were either psychologists or life scientists.
Since most of the doctoral scientists and einginears in educational institutions are in 4 -year colleges and universities (where most academic science and engineering research takes place), the following analysis focuses on individuals at these institutions.

Employment of doctoral scientists and engineers at 4 - year colleges and universities grew at an annual rate of 3.5 percent over the decade (chart 9). The largest growth occurred in the number of computer specialists; this number increased at an annual rate of almost 12 percent. Other major fields showing above average increases were the life and social sciences and engineering. Slower than average growth was recorded by physical, environmental, and mathematical scientists, and psychologists. Differences in growth

rates changed the field distribution of doctoral scientists and engineers. For example, the proportion who were physical scientists declined from about 17 percent to 14 percent, while
the proportion who were social scientists rose from 20 percent to 22 percent over the 197585 decade.
The relative importance of the academic sector in providing employ-
ment opportunities for doctoral scientists and engineers varies considerably by fied. This sector, for example, employs 78 percent of the mathematicians but only 19 percent of doctoral-level aeronautical engineers. Four-year colleges and universities employ more than one-half of the doctoral-level mathematical, life, and social scientists. For engineers, civil engineering is the only field where more than one-half of those in the field are employed by academia; among other engineering fields, the proportion ranged from 44 percent of the mechanical engineers to 19 percent of the aeronautical engineers. Since 1975, the share of doctoral scientists and engineers employed in 4-year colleges an : universities has declined for all major fields except chemical, civil, and mechanical engineering (chart 10).
Reported work activities of doctoral scientists and engineers in academia have changed over the decade. Although teaching remains the major activity, it grew slower than did most others. The number reporting research and development as their major activity, for example, increased at an anriual rate of 5.5 percent over the 1975-85 period while the number reporting teaching as their major work rose at an annual rate of only 1.8 percent. Because of these different growth rates, the proportion reporting research and development as their major activity rose from 25 percent in 1975 to 30 percent in 1985. The proportions reporting teaching as their major activity declined from 60 percent to 51 percent over the same period.

The more rapid increase in R\&D employment mirrors the growth in academic $R \& D$ expenditures: these expenditures increased (in constant dollars) more than 4 percent per year. ${ }^{4}$ The relatively slow growth in the number reporting teaching as

[^4]
their major activity reflects, to some extent, the small increase in the number of students earning degrees in science and engineering.

The relative importance of teaching varied by field in 1985, ranging from 70 percent for social scientists to 33 percent for life scientists (chart
11). Declines in the relative importance of teaching were reported for all major science and engineering
fields. Absolute declines were recorded for physical and environmental scientists.

sectoral mobility

Over the 1975-85 period, the sectoral mobility patterns of doctoral scientists and engineers have been mixed (table 3). In general, there has been little flow into or out of academia; on the other hand, there have been substantial movements among public sectors (Federal and State/local) and other sectors. Inflows to industry have been greater than outflows.
The number of employed doctoral scientists and engineers rose from 256,000 in 1975 to 400,000 in 1985. Focusing on those who were employed in both 1975 and 1985 permits an: examination of mobility among employment sectors. Sectoral mobility can be viewed from two perspectives: (1) flows out of a sector; and (2) flows into a sector.

Outflows from the major employment sectors were not large over the 1975-85 decade (table 3). For example, about 91 percent of those employed in industry in 1975 also were employed in industry in 1985; only about 5 percent had left industry for a job in a 4 -year college or university. The proportion who remained in 4 -year colleges or universities over the decade was about 87 percent, while about 8 percent had left academia for a job in industry. Table 3 also shows relatively large outflows from the government sectors: most who left the public sectors moved to jobs in industry. For example, only about 48 percent of those employed in State and local government in 1975 were still in that sector by 1985, while about 26 percent had switched to a job in industry. These outflows from the public sector may reflect the impact of lower salaries sompared to those paid by industry.
The largest inflows were into the industrial sector (table 3). Of those employed in industry in 1985, about 72 percent were.in industry in 1975. Roughly 16 percent of those in industry in 1985 had been employed in a 4 -year college or university in 1975.

Table 3. Sectoral flows of doctoral scientists and engineers: 1975.85

(Percents)						
OUTFLOWS						
	Sector In 1985					
Sector	Total	Industry	4-year colleges and universities	Federal Government	Statel local government	
Sector In 1975 Total \qquad	100	31	54	7	1	;
Industry	100	91	5	2	'	2
4-year colleges and universitles	100	8	87	2	1	2
Federal Government...	100	13	8	74	1	4
Statellocal government ...	100	26	13	2	48	11

inflows

Sector	Sector in 1985				
	Total	Industry	4-year colleges and universities	Federal Government	Statel local government
Sector In 1975 Total \qquad	100	100	100	100	100
Industry	24	72	2	5	6
4-year colleges and universitles	58	16	94	13	23
Federal Government.	7	3	1	77	3
Statellocal government ...	2	1	,	,	50
All other sectors \qquad	9	8	3	5	18

'Less then 0.05 porcont
SOURCE: National Scionce Foundation, SRS: basoc on unpubilished data

age profiles

The average age of the doctoral S/E population has increased over the decade. This insiease reflects the relatively level production of new doctora! scientists and engineers (between 17,000 and 18,000 per year) and the resulting slowdown in the rate of growth in the number of employed S/E ductorates. In 1975, 25 percent were under age 35 and 14 percent were 55 years of age or older. By 1985, 14 percel. tere under 35 years of age and 19 rercent were 55 or older. Examining the age profiles by field reveals relatively little differences except for computer specialists: in 1985, only about 8 percent of computer specialists were 55 or older, compared to 19 percent of all scientists and engineers.

Doctoral scientists and engineers in academia, on average, are older than their colleagues in industry. In 1985, 21 percent of those in academia and 16 perceric of those in industry were 55 or older.
 activity suggests that younger doctoral scientists and engineers are much more likely than their more
senior colleagues to work in research and development, especially basic research. More than one-half (55 percent) of all those under 35 years of age were in research and development compared to only 23 percent of those 55 years of age or older (table 4).

On average, those doctoral $\mathrm{s}=\mathrm{i}$ entists and engineers who reported teaching as their primary work activity were older than those who reported R\&D work. In 1985, only 9 percent of those involved mostly in teaching were under 35; 24 percent were 55 or over.

Table 4. Doctoral scientists and engineers by age and selected wark activity: 1985

Age	Percent engaged In			Percent distribution		
	Total research end development	Basic research	Teaching	Total . 3seerch and development	$\begin{gathered} \text { Basic } \\ \text { research } \end{gathered}$	Teaching
Total .	33.1	15.3	27.9	100.0	100.v̌	100.0
Under 3^{\prime}.	54.7	29.9	18.9	22.5	26.6	9.2
Under 4l.	45.5	22.9	21.7	45.6 *	49.5	25.8
Under $50 . .$.	37.0	17.5	25.0	78.7	80.2	62.9
Under $55 . .$.	35.4	16.6	26.1	86.8	87.9	75.9
55 and older	23.1	9.8	35.6	13.2	12.1	24.1

SOURCE: Natlonal Sclence Foundation. SRS; based on table B. 3 and unpublishod da:-

salaries

The median annual salary for Ph.D. scientists and engineers increased faster than the average weekly earnings in selected nonagricultural industries, but slower than the Consumer Price Index (CPI) between 1975 and 1985. The median salary for doctoral scientists and engineers rose 93 percent ($\$ 23,200$ to $\$ 44,800$), while the average weekly earnings in nonagricultural industries rose 83 percent, ${ }^{5}$ and the CPI was up 100 percent.
Salaries for doctoral scientists and engineers vary by field, sector, work activity, and years of professional experience. In 1985, median annual salaries for scientists $(\$ 42,500)$ were below those for engineers ($\$ 52,400$). The highest S / E salaries were reported by chemical engineers ($\$ 55,700$); the lowest salaries $(\$ 39,500)$ were reported by psychologists.
Examining the decile range of salaries shows a slightly different pattern across fields (table 5). Engineers' salaries at both the lower and upper decile were higher than the corre-

[^5]sponding salaries of scientists. Among the lower decile salaries of scientists, psychologists reported the lowest; at the upper decile level, the
lowest salaries were reported by mathematical scientists.
Doctoral scientists and engineers in industry reported salaries sub-

Table 5. Lower and upper deciles and median annual salaries of doctoral scientists and engineers by field: 1985

Field	In dollars		
	Lower decile	Median	Unper decile
Total.	28,600	44,800	C9,700
Total scientists.	27,600	42,500	67,200
Physical scientists	30,800	47,000	70,300
Mathematical scientists	28,600	42,100	62,200
Computer specialists.	30,700	46,000	68,300
Environmental sclentists	30,500	46,600	68,900
Life scientists.	27,300	41,700	66,600
Psychologists	25,900	39,500	65,800
Social scientists.	26,200	40,500	64,400
Total engineers.	39,000	52,400	77,600
Aeronautical/astronautical	39,600	53,800	70,700
Chemical	39,900	55,700	84,500
Civil	35,400	48,500	70,000
Electrical/electronics.	39,700	55,100	82,700
Materials science	39,900	51,800	73,200
Mechanical	39,100	51,100	71,000
Systems design	40,200	54,600	75,800

[^6]stantially above those received in other sectors. In 1985, the average in industry was $\$ 52,000$ per year; this salary was more than $\$ 11,000$ above the average in educational institutions. In 1975, the highest earned salaries were those in ine Federal Government with industry running a very close second. In 1985, salaries of those in the Federal Government
averaged $\$ 48,400$ or 7 percent below those in industry (appendix table 28).

Doctoral scientists and engineers citing $R \& D$ management as their major work activity reported annual salaries of $\$ 60,300$ in 1985, 35 percent higher than the average. The lowest saiaries ($\$ 39,200$ or about 12 percent below average) were reported by those primarily engaged
in teaching (table B-29).
Finally, salaries increase with number of years of professional experience. In 1985, those with 1 year or less of professional experience reported salaries of $\$ 30,400$, while those with 35 years or more of experience reported salaries of about $\$ 60,000$. (See table B-33.)

section v

women and minorities ${ }^{6}$

women

Levels and trends. The number of employed women holding doctorates in science aind engineering more than doubled between 1975 and 1985, increasing from 22,000 to more than 58,000 . This sharp increase represented an annual average growth rate of more than 10 percent. In comparison, employment of doctoral men scientists and engineers rose only about 4 percent per year over the same period.
Annual growth rates in employment have slowly declined for both

[^7]Ph.D. women and Ph.D. men throughout the decade. For example, the annual growth rate for ductoral women scientists and engineers was 11.8 percent between 1975 and 1977; between 1981 and 1985, the annual rate of increase averaged somewhat more than 9 percent. This trend was similar for men scientists and engineers: between 1975-77, their annual average employment growth rate was 4.9 percent; it fell to 2.9 percent between 1981-83; and rose somewhat to 3.3 percent during the last 2-year period.
The above average growth rate in employment for Ph.D. women scientists and engineers throughout the decade reflects their above average growth in terms of degree production. Between 1975 and 1985, the number of S / E doctorates granted to
women rose from 2,836 to 4,655 . Conversely, the number of such degrees earned by men declined from 15,522 to 13,606 .
Annual average employment growth rates for women outpaced those for men across all fields of science and engineering between 1975 and 1985. The highest rate for women (27 percent per year) was posted among those holding Ph.D.s and working as computer specialists; the lowest rate (6 percent annually) was among doctoral mathematical scientists. For men, the corresponding annual growth rates ranged from 15 percent (computer specialties) to 2 percent (mathematical sciences).
Despite more rapid growth rates across all fields, women accounted for only 15 percent of all employed doctoral scientists and engineers in

1985; this fraction was, however, up from 9 percent in 1975. Representation of women varies considerably by field (chart 12). For example, in the sciences, women accounted for 32 percent of Ph.D. psychologists, but only 4 percent of Ph.D. physicists, in 1985. About 2 percent of doctoral engineers were women:

Field distributions differ significantly between women and men (chart 13). Ph.D. women are much more likely to be scientists than engineers and within the sciences, they are concentrated in the life sciences (especially biology), psychology, and
the social sciences. In contrast, men are more often in the physical and life sciences and engineering.

Salaries. In 1985, overall median annual salaries reported by doctoral women scientists and engineers averaged 77 percent of those reported by men: $\$ 35,500$ versus $\$ 46,000$. By field, the narrowest differential was in psychology where salaries for women ($\$ 34,800$) averaged about 86 percent of those for men $(\$ 40,700)$. The widest differentials (81 percent) occurred in the physical and life sciences.

The wider overall salary differ-
ential partially results from differences in field concentrations of Ph.D. women and men. Men are more heavily concentrated than are women in those fields (e.g., physical science and engineering) that report above average annual salaries. From 197585, this overall salary differential has widened: in 1975, women's salaries $(\$ 19,100)$ averaged 81 percent of men's salaries ($\$ 23,500$). Again, the differential reflects employment growth patterns among fields since women are more heavily concentrated in fields where below average salaries are reported.

Sector. Doctoral women and men are concentrated in different employment sectors (chart 14). Although academia employs the largest proportions of both women and men, women are more likely to work in educational institutions. The differences in sectoral distribution between the sexes have narrowed during the decade. For example, in 1975, 70 percent of women and 57
percent of men worked in academia; by 1985, these proportions were 59 percent and 52 percent, respectively.

Industry has been the fastest growing sector of employment for both Ph.D. women and men throughout the decade. The annual average growth rate for women in industry, however, has more than tripled that for men. Between 1975
and 1985, the annual increase in industrial employment was 20 percent for women compared to only 6 percent for men. Given this above average rate, the fraction of women employed in industry rose from 10 percent $(2,100)$ in 1975 to 22 percent $(12,900)$ in 1985.

Annual sectoral growth rates over the decade for Ph.D. women were 8 percent in academia and 10 percent in the Federal Government. For doctoral men, comparable rates were 3 percent per year for both sectors.

Work activities. There are significant differences in the work activities reported by doctoral women compared to those of doctoral men (chart 15). For example, about onethird of both Ph.D. women and men report research and development as their primary work activity. Within research and development, however, three-fifths of women, but slightly more than two-fifths of men, were primarily engaged in basic research. Ph.D. women have fewer years of professional experience than do men; this fact helps explain why almost three times as many doctoral men than women report R\&D management as their primary work. In 1985, more than one-half (54 percent) of all doctoral women scientists and engineers reported less than

10 years' professional experience compared to 28 percent of doctoral men.
Women are much more likely than men to report professional services as their major activity. In 1985, about 16 percent of Ph.D. women, compared to less than 7 percent of Ph.D. men, reported this activity. Regardless of sex, a large majority of those who report this activity are psychologists: 83 percent of women and 63 percent of men.
Since 1975, the fastest growing work activities for doctoral women have been development (20 percent per year), professional services (15 percent), applied research (14 percent), and consulting (14 percent). Among Ph.D. men, growth in the number reporting professional ser-

vices (11 percent), consulting (10 percent) and development (6 percent) outpaced all other activities. Teaching, the work activity of a large fraction of doctoral scientists and engineers, showed relatively low annual growth rates for both women (6 percent) and men (1 percent): this slower growth partially reflects the relatively low growth rates in overall academic employment.

racial minorities

Levels and trends. The number of employed doctoral scientists and engineers who were members of racial minority groups rose from 16,500 in 1975 to 41,100 in 1985. Almost all (85 percent) of this increase is attributable to the increased number of Asian Ph.D.'s which rose from 13,600 to 34,500. Employment of black Ph.D. scientists and engineers also increased sharply from 2,500 in 1975 to 5,700 in 1985.

Annual average employment growth rates for both Asians and blacks were generally higher than those for whites across all S/E fields (chart 16). However, the fastest growing field regardless of racial group was computer specialties. Growth rates ranged from 15 percent for blacks to 25 percent for Asians.

The above average growth rates for both Asians and blacks reflect rapid rates of doctoral degree production. For Asians, the number of S/E degrees awarded rose from 1,700 in 1975 to almost 2,900 in 1985. This increase is completely attributable to the increasing numbers of doctoral degrees awarded to Asians with temporary visas; over the decade, the number of degrees granted to such individuals rose from 900 to almost 2,100 . The increase in degree production for blacks was not quite as dramatic: between 1975 and 1985, the number of S / E doctorates earned by blacks increased from 370 to almost 540.

Consistent with their high growth rates in employment, representation of Asians among doctoral scientists and engineers rose substantially over the decade. In 1985, Asians accounted for 8.6 percent of employed Ph.D. scientists and engineers, up from 5.3 percent in 1975. The representation of blacks also increased, from 1.0 percent in 1975 to 1.4 percent in 1985.
Minority representation varies substantially by S/E field. For example, Asians account for a little more than 1 percent of Ph.D. psychologists but 27 percent of Ph.D. chemical engineers. Blacks, on the
other hand, account for about 3 percent of Ph.D. social scientists, but less than 1 percent of doctoral engineers.

Field distributions also differ across racial groups (chart 17). While more than one-third of employed Asian Ph.D.s are engineers, about oneseventh of whites, and one-tenth of blacks were employed in this field. Among black doctoral scientists and engineers, more than three-quarters were in either the social or life sciences, or in psychology.

Salaries. Black doctoral scientists and engineers report median annual salaries lower than those of either
their white or Asian counterparts regardless of S/E field. In 1985, overall median salaries were $\$ 40,100$ for blacks, $\$ 44,800$ for whites, and $\$ 45,500$ for Asians. The largest difference in annual salaries occurred in engineering where salaries for blacks averaged $\$ 45,600$ compared to $\$ 50,300$ and $\$ 53,600$ for Asians and whites, respectively. Since 1975, the salary differences between racial groups have increased; at that time, the reported annual salaries were $\$ 22,800$ (blacks), $\$ 23,300$ (whites), and $\$ 21,500$ (Asians).

Sector. Both black and white Ph.D. scientists and engineers are much

more likely to be employed in academia than are Asians. In 1985, twothirds of blacks, a little more than one-half of whites, but only slightly more than two-fifths of Asians, worked in academia. This lower fraction among Asians partially reflects their field concentrations. For exampie, a high proportion of Asian Ph.D.s were engineers; in 1985, twothirds of these Asian Ph.D.s were employed in industry. For all racial groups, industry was the fastest growing employment sector between 1975 and 1985. Annual growth rates were 13 percent for Asians, 11 percent for blacks, and 6 percent for whites.

Work activities. Primary work activities differed substantially by racial group. For example, in 1985, black doctoral scientists and engineers reported teaching (38 percent) more often than other activities; Asians, however, were more likely to report activities related to research and development (50 percent). Whites, too, reported the largest fraction (32 percent) in research and development. Over the 1975-85 decade, the fastest growing work activities for both black and white doctoral scientists and engineers were development and consulting; for Asians, development and R\&D management activities registered the highest rates of growth.

hispanics

Levels and trends. There were almost 5,900 Hispanic doctoral scientists and engineers employed in the United States in 1985, up from 2,000 10 years earlier. This increase represents an annual growth rate of over 11 percent. In comparison, the annual employment growth rate for all doctoral scientists and engineers was only 4.6 percent. Growth rates for Ph.D. Hispanics, however, have slowed during the decade. For example, between 1975 and 1977, they registered an annual rate of about 15
percent; during the 2 -year period ending in 1979, this rate increased to 24 percent per year; but by the 1983-85 period, their annual growth rate in employment had fallen to about 4 percent.
Doctoral degree production among Hispanics more than about doubled over the decade: in 1975, about 220 doctorates were awarded to Hispanics; this number increased to 560 in 1985. Of the 1985 degrees, about onehalf were granted to Hispanics with temporary visas.
By 1985, doctoral Hispanic scientists and eagineers accounted for 1.5 percent of the total work force, up from 0.8 percent in 1975. The field distribution of Hispanics is similar to that of all Ph.D. scientists and engineers (chart 18): they are much more likely to be scientists rather than engineers; within the sciences, they are concentrated in the life and social sciences.
Salaries. The median annual salary of doctoral Hispanic scientists and engineers was below that for all Ph.D.s ($\$ 42,200$ versus $\$ 44,800$) in 1985. This gap has increased since 1975, when salaries were $\$ 22,500$ (Hispanics) and $\$ 23,200$ (all Ph.D.'s).
Sector. More than one-half (53 percent) of Ph.D. Hispanics were employed in the academic sector in 1985; another one-quarter (27 percent) worked in industry. This distribution does not differ substantially from that of all doctoral scientists and engineers. For Hispanics, the fastest growing sector over the decade was industry: employment has increased at almost 17 percent per year over the decade. The comparable annual growth rate for all Ph.D. scientists and engineers was 7 percent.

Work activities. Compared to all doctoral scientists and engineers, Ph.D. Hispanics are more likely to report basic research, general management, or sales/professional services as their primary work activities. They are less likely to report either development or teaching. In 1985, for example, about 21 percent of Hispanics were primarily engaged

in basi. research and another 21 percent reported teaching as their major activity. For ail doctoral scientists and engineers, these percentages were 15 percent and 28 percent, re-
spectively. General management was the fastest growing work activity for Hispanics between 1975 and 1985 ; in 1985, about 10 percent reported this activity as their primary work.

appendixes

a. technical notes
b. detailed statistical tables
c. reproduction of 1985 survey questionnaire

appendix a

technical notes

The preceding report presents data on the demographic and employment characteristics of the Nation's doctoral scientists and engineers. This population consists of individuals in the United States who hold S/E doctorates or who had received doctorates in non-S/E fields but who, as of 1985, were employed in S/E positions.

The data included in this report were developed from the Survey of Doctorate Recipients, a biennial series initiated in 1973. The population for these surveys encompasses Ph.D. graduating cohorts over a 42-year period. For example, the population for the 1985 survey was comprised of individuals who had received doctorates during the period January 1, 1942, to June 30, 1984. To maintain this 42 -year time span for each succeeding survey, the two most recent graduating cohorts of Ph.D.'s are added to the population, while the two oldest are eliminated.

This report contains selected data from six biennial surveys (1975,1977 , 1979, 1981, 1983, and 1985) covering the 1975-85 decade. Based on analysis of individuals' response patterns, revisions were made in 1983
to earlier data: these modifications yielded data that are more accurate and stable over time. Because of these revisions, data appearing in this report may differ significantly from estimates published prior to 1983.

Technical aspects of the Survey of Doctorate Recipients are preserted below. Reproduction of the 1985 questionnaire and accompanying specialties list is included in appendix c .

survey universe

Surveys of doctoral scientists and engineers are based on a sample of individuals drawn from a roster of doctorate recipients. This roster is principally compiled from the Na tional Science Fourdation's Doctorate Records File, an accumulated record of data on doctorate recipients from U.S. institutions. The file's population consists of those individuals who earned a doctorate in the natural or social sciences, mathematics, or engineering from U.S. institutions; as well as individuals who received research doctorates in non-

S/E fields but were known to be employed as scientists or engineers. The population also includes some individuals who had earned their doctorates at foreign institutions and were known to be working as scientists and engineers in the United States.

survey procedures

The sample design of the Survey of Doctorate Recipients includes stratified random sampling with variable sampling rates. ${ }^{1}$ Individuals in the sampling frame are stratified ac `rding to the following characterıstics:

[^8](1) Source and type of degree (U.S. S/E doctorate holders, non-S/E doctorate holders, and foreign doctorate holders),
(2) Sex,
(3) Field of doctorate,
(4) Year of doctorate,
(5) Racial/ethnic identification, ${ }^{2}$ and
(6) citizenship. ${ }^{3}$

Variable sampling rates are used to ensure adequate representation of small groups within the population. Within small cells, this has necessitated the inclusion of all available cases; larger cells, however, do not need to be so heavily sampled to yield reliable statistics.

demographic and employment measures

Information on demographic and employment variables is based on individual responses to survey questions. ${ }^{4}$ The following definitions are provided to permit effective use of the data presented in thus report. (See table A-1.)

Field of science and engineering. Field is derived primarily from the name or title of the specialty most closely related to the respondent's principal employment. Specialties were selected from the Employment Specialties List included with the questionnaire. Individuals failing to respond to this question, as well as those who reported non-S/E em-

[^9]Table A-1. Sciencelengineering field classification of specialties: 1985 Survey of Doctorate Recipients

Field	Specialty code
Total	00010799
Physical scientists	10110299
Chemists	20010299
Physicists/astronomists .	101 to 199
Mathematical scientists	00010060,082 to 099
Mathematicians	00010 052, 060, 08210099
Statisticians	055
Computer specialists	07110081
Environmental scientists	301 10:39
Earth scientists	301 to 360, 388 to 395, 398, 399
Oceanographers	370, 397
Atmospheric scientists	38110383
Life scientists	500, 50310599
Biological scientists .	540 to 599
Agricultural scientists	500, 50310519
Medical scientists.	520 to 539
Psychologists	60010699
Social scientists	501, 70010799
Economists	501, 720, 725
Sociologists/anthropologists	700, 710
Other social scientists	703 to 709, 727 to 799
Engineers.	400 to 499
Aeronauticallastronautical	400
Chemical	430
Civil.	420, 480
Electrical/electronics	436, 437, 440, 445
Materials sclence	435, 475, 490, 497
Mechanical	470, 485
Nuclear.	455
Systems design .	476 to 478
Other..	410, 415, 450, 460, 465, 479, 486, 487, 498, 499

NOTE, See Employment Spectallios List associated with 1985 questionnsite for ittes of employment spectattios. SOURCE: National Seience Foundation
ployment were assigned the specialty of their doctoral degree. ${ }^{5}$

Sector of employment. Sector of employment is based on information regarding the individual's prin-

[^10]cipal employment. The category "educational institutions" includes junior colleges, 2-year colleges, technical institutes, medical schools (including university-affiliated hospitals or modical centers), 4-year colleges or universities, and elementary or secondary school systems. The category "nonprofit organizations" includes private foundations.
Primary work activity. This variable is determined from responses
to questions requesting the individual's primary work activity and the percent of time devoted to this and other activities. "Development" encompasses design as well as the develonment of equipment, processes, syste ns, or data.
Salary. Salary information is derived from responses to questions about annual salary before deductions for income tax, social security, redirement, etc., but excluding bonuses, overtime, summer teaching, or other payment for professional work. Salaries reported are median annual salaries, rounded to the nearest $\$ 100$ and computed for fulltime employed civilian scientists and engineers only. Differences between calendar-year salaries (11 to 12 months) and academic-year salaries (9 to 10 months) have been accommodated by multiplying aca-demic-year salaries by eleven-ninths to adjust to a calendar-year scale.
This report also contains several derived statistical measures reflecting labor force and employment rates, as foilows:
Labor force participation rate. The labor force is defined as those employed and those seeking employment. The labor force participation rate ($R_{\text {If }}$) is the ratio of those employed (E) and those unemployed but seeking employment (U) to the population (P).
$$
R_{I I}=(E+U) / P
$$

S/E employment rate. The S/E employment rate $\left(\mathrm{R}_{\mathrm{se}}\right)$ measures the ratio of those holding jobs in science and engineering ($\mathrm{S} \& E$) to the total employment (E) of scientists and engineers, which includes those holding nonscience and nonengineering jobs.

$$
R_{S E}=(S \& E) / E
$$

Unemployment rate. The unemployment rate $\left(R_{u}\right)$ shows the ratio of those who are unemployed but seeking employment (U) to the total labor force ($\mathrm{E}+\mathrm{U}$).

$$
R_{U}=U /(E+U)
$$

reliability of estimates ${ }^{\text {© }}$

The survey data presented in this report are subject to error including that resulting from sampling. Sampling variability is that chance variation occurring because a sample, rather than the entire population, was surveyed. The sample selected for any given survey is only one of many which could have been selected using the same sample design and size; estimates based on each of these samples would differ from one another. The deviation of a sample estimate from the average of all possible samples provides the basis for determining the estimate's sampling error. The standard error of a survey estimate provides a measure of the precision with which the estimate approximates the average results of all possible samples.

The estimated standard error may be used to construct confidence in-tervals-bounds set around the sample estimate in which, with some prescribed probability, the average estimate from all possible samples will lie. Thus, when the reported standard error is added to and subtracted from a survey estimate, the resulting range of values reflects an interval within which about 68 percent of all sample estimates, surveyed under the same conditions, will fall. Intervals reflecting a greater confidence level may be constructed by increasing the number of standard errors for a given estimate. Thus, $+/-1.65$ standard errors will yield about a 90 -percent confidence interval and $+1-2$ standard errors, about a 95 -percent confidence interval.

[^11]Table A-2 lists the standard errors associated with estimated survey totais for selected S/E fields based on results of the 1985 survey. These data may be used as a proxy measure for standard errors associated with survey estimates from earlier years.
Alternatively, the standard error of an estimated total (S_{x}) can be calculated directly using the following formula:

$$
s_{x}=\left[a x^{2}+b x\right]^{1 / 2}
$$

where " x " equals the estimated total and " a " and " b " are regression coefficients. Values of "a" and " b " for selected S/E fields are presented in table A-3.
Table A-4 presents standard errors associated with a rarge of estimated percents ${ }^{7}$ relating to data from the 1985 survey. Again, these data may be used as a proxy for sampling errors from earlier surveys.

The standard error of an estimated percent may also be calculated directly using the following formula:

$$
s_{p}=p[b((1 / x)-(1 / y))]^{1 / 2}
$$

where p equals the percent possessing the specific attribute and x and y represent the numerator and denominator, respectively, of the ratio which yields the observed percent.

Note that the standard error estimates included in this report provide approximations of sampling reliability. They therefore should not be considered precise measurrs. ${ }^{8}$

[^12][^13]Table A-2. Approximate standard errors of estimated number of scientists and engineers by field: 1985 Survey of Doctorate Recipients

[^14]SOURCE: National Rosoarch CouncIl

Table A.3. Listing of a and b parameters for selected science and engineering fields: 1985 Survey of Dontorate Recipients

	a	b
Total	-0.00003985	18.0554
Total scientists	-0.00003859	16.4004
Physical scientists	-0.00016339	19.1084
Mathematical scientists	-0.00042159	13.8816
Computer specialists .	-0.00012426	20.7840
Environmental scientists	-0.00000937	11.7978
Life scientists	-0.00007564	12.3487
Psychologists	-0.00025944	17.0769
Social scientists	-0.00030801	26.6036
Total engineers	-0.00031461	29.8416
Aeronautical/astronautical	(')	(')
Chemical	-0.00040686	33.6294
Civil	0.00098256	31.9539
Electrical/electronics	-0.00029391	31.7871
Materials science	-0.00032891	32.1610
Mechanical	-0.00031410	35.3973

'Estimates of standard errors are not shown for groups with fewer than 20 respondents or when relatively large standard errors were associated with estimates of even 90 percent or mure of the group.
SoURCE: National Research Council

Table A.4. Approximate standard errors for estimated percents of doctoral scientists and engineers: 1985 Survey of Doctorate Recipients

Base number of percent	Estimated percent							
	1 or 99	2 or 98	5 or 95	10 or 90	15 or 85	25 or 75	50150	
50	6.0	8.4	13.1	18.0	21.5	26.0	30.0	
100	4.2	5.9	9.3	12.7	15.2	18.4	21.2	
200	3.0	4.2	6.5	9.0	10.7	13.0	15.0	
500	1.9	2.7	4.1	5.7	6.8	8.2	9.5	
700	1.6	2.2	3.5	4.8	5.7	7.0	8.0	
1000	1.3	1.9	2.9	4.0	4.8	5.8	6.7	
2500	.8	1.2	1.9	2.5	3.0	3.7	4.2	
5000	.6	.8	1.3	1.8	2.1	2.6	3.0	
10000	.4	.6	.9	1.3	1.5	1.8	2.1	
25000	.3	.4	.6	.8	1.0	1.2	1.3	
50000	.2	.3	.4	.6	.7	.8	1.0	
75000	.2	.2	.3	.5	.6	.7	.8	
100000	.1	.2	.3	.4	.5	.6	.7	
150000	.1	.2	.2	.3	.4	.5	.5	
200000	.1	.1	.2	.3	.3	.4	.5	
250000	.1	.1	.2	.3	.3	.4	.4	
310000	.1	.1	.2	.2	.3	.3	.4	
409000	.1	.1	.1	.2	.2	.3	.3	

SOURCE: National Research Councll

appendix b

detailed statistical tables

B-8. Employed black doctoral scientists and engineers by field and sector of employment: 1975-85 toral scientists and engineers by field and sector of employment: 1975-85 \qquad60
B-10. Employed Hispanicdoctoral scientists andengineers by field andsector of employment:1975-8562
Sector of Employment
B-4. Employed doctoral sci- entists and engineers by field and sector of em- ployment: 1975-85

\qquad 48
B-5. Employed men doctoral scientists and engineers by field and sector of employment: 1975-85 52 52 2
B-6. Employed women doc- toral scientists and engi- neers by field and sector of employment: 1975-85 54
B-7. Employed white doc- toral scientists and engi- neers by field and sector of employment: 1975-85 $5 ย$
-

Total Employed

B-1. Employed doctoral sci- entists and engineers by field and sex: 1975-85 39
B-2. Employed doctoral sci- entists and engineers by field and race/ethnic group: 1975-85 41
B-3. Employed doctoral sci- entists and engineers by field, age, and primary work activity: 1975 and 1985 44
B-i2. Employed men doctoral

B-12.scientists and engineersby field and primary64
69
B-13. Employed women doc- toral scientists and engi- neers by field and primary work activity: 1975-85 71
B-14. Employed white doc- toral scientists and engi- neers by field and
Primary Work Activity
B-11. Employed doctoral sci-

B-11. Employed doctoral sci-entists and engineers byfield and primary workactivity: 1975-856458

B-9. Employed Asian doc-B-9. toral scientists and engneers by field andsector of employment:dotoral scientists and entists and engineers by field and primary work

work activity: 1975-85
Page Page
Employment in Industry
B-18. Doctoral scientists and engineers in industry engineers in industry
by field and sex: 1985 81
R-19. Doctoral scientists and engineers in industry by field and racial/eth- nic group: 1985 82
B-20. Doctoral scientists andengineers in industryby field and primarywork activity: 198583
B-21. Doctoral scientists and engineers in industry by field and age: 1985 84
Page
primary work activity:1975-8573
B-15. Employed black doc- toral scientists and engi- neers by field and primary work activity: 1975-85 75
B-16. Employed Asian doc- toral scientists and engi- neers by field and primary work activity: 1975-85 77
B-17. Employed Hispanicdoctoral scientists andengineers by field andprimary work activity:1975-8579

Employment in Academia

B-22. Doctoral scientists and engineers in 4-year colleges/universities by field and sex: 1985
 85

B-23. Doctoral scientists and
engineers in 4 -year col
leges/universities by
field and racial/ethnic
group: 1985
B-24. Doctoral scientists and engineers in 4-year col- leges/universities by field and primary work activity: 1985 87
B-25. Doctoral scientists and engineers in 4 -year col- leges/universities by field and age: 1985 88

Field of Degree by Field of Employment

B-26. Percent distribution of doctoral scientists and engineers by field of
employment and field and engineers in 4-year of doctorate: 197589
B-27. Percent distribution of
doctoral scientists and
engineers by field of
employment and field
of doctorate: 1985. 92

Salaries

B-28. Median annual salaries of doctoral scientists and engineers by field and sector of einployment: 1975 and 1985 95

B-29. Median annual salaries
of doctoral scientists
and engineers by field
and primary work activ
ity: 1975 and 1985

B-30. Median annual salaries of doctoral scientists and engineers in industry by field and primary work activity: 1975 and 198597

B-31. Median annual salaries of doctoral scientists
colleges/universities by field and primary work activity: 1975 and 1985
B-32. Median annual salaries of doctoral scientists and engineers by field, sex, and racial/ethnic group: 1975 and 198599
B-33. Median annual salaries
of doctoral scientists
and engineers by field
and years of profes
sional experience: 1985 100

Selected Employment Rates

13-34. Selected employment rates of doctoral scientists and engineers by field, sex, and racial/ ethnic group: 1975

[^15]TABLE B-1. EMPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND SEX: 1975-85

FIELD	1975	1977	1979	1981	1983	1985
ALL FIELDS						
TOTAL EMPLOYED	235,900	285,100	314,300	344,000	369,300	400,400
MENEN	233,900	257,500	280,900	303,000	320, 500	341,900
	22,120	27,600	33,400	41,000	48,800	58,500
SCIENTISTS						
TOTAL EMPLOYED.	213,500	240,000	263,900	286,900	307,800	334,500
MEN.	191,700	212,700	231,000	246,700	260,000	277,500
WOMEN	21,800	27,300	32,900	40,200	47,800	57,000
PHYSICAL SCIENTISTS 5400						
TOTAL EMP:OYED...........	54,600	57,500	60,200	63,100	64,000	67,500
	52, 100	54,600	57,100	59,300	59,800	62,800
CPEMISTS						
MEN.	33, 800	35,000	37,100	38,800	37, 800	33,700
WOMEN	2,100	2,400	2,600	3,200	3,500	3,800
PHYSICISTS/ASTRONOMERS						
TOTAL EMPLOYED...........	18,800	20,100	20,600	21,200	22,700	23,700
MENIEN.	18, 300	19,600 600	20,000 600	20, 600	22,000	22,900
MATHEMATICAL SCIENTISTS						
TOTAL ERPLOYED..........	13,600	14,600	15300	15,600	16,400	16,800
	12,700	13,600	$14,1,0$	14,300	15,000	15,200
MATEEMATICIANS						
MEN.	11,000	11,900	12,800	13,000	13, 600	14,000
WOMEN	800	900	1,000	1,000	1,100	1,200
STATISTICIANS						
TOTAL EMPLOYED	1,700	1,80n	2,400	2,500	2,800	2,800
HOHIEN	1,700 100	1,600	2,200	2,300	2,500	2,500
COMPUTER/ENFORMATION SPECIALISTS						
TOTAL EMPLOYED...........		5,800	6,700	9,100	12,200	15,000
	3,400 100	5,500	6,300 400	8,400	10,900	13,300
ENVIRONMENTAL SCIENTISTS						
TOTAL EMPLOYED...........	12,100	13,000	14,600	15,900	16,500	17,300
MEN.	11,800	12,600	14,000	15,100	15,600	16,200
WOMEN	300	400	600	900	900	1,100
FARTH SCIENTISTS						
20TAL EMPLOYED...	9,500	9,700	11,100	12,000	12,500	13,200
MENAEN:	9,300	9,400	10,700	11,400	11,900	12,400
	200	300	400	60 J	600	0
OCEANOGRAPHERS						
TOIAL EMPLOYED.	1,300	1,600	1,700	1,800	1,700	2,000
MEN.	1,200	1,500	1,500	1,600	1,600	1,700
howe	100	1, 100	200	200	, 200	1,200
ATMOSPHERIC SCIENTISTS						
TOTAL EMPLOYED	1,300	1,700	1,800	2,100	2,200	2,100
MENEN	1,300	1,700	1,800	2,000	2,100	2,000
		100		100	100	100
LIFE SCIENTISTS						
TOTAL EMPLOYED.	63,300	70,500	78,900	84,900	92,800	101,800
MEN.	55,800	61,400	67,500	71,600	76,600	82,100
WOMEM	7,500	9,100	11,300	13,300	16,200	19,700
BIOLOGICAL SCIENTISTS						
TOTAL EMPLOYED.	39,000	42,100	45,600	49,600	55,200	59,900
MENEN.	33,300	35,400	37,700	40,600	44,600	47, 200
WCOEN	5,800	6,700	7,900	9,000	10,600	12,600
AGRICULTURAL SC' ENTISTS						
TOTAL EMPLOYED...........	11,000		12,800	13,500	14,500	15,500
MEN.	10,800 100	11,900 200	12, 500	13,100 400	13,900	14,700
MEDICAL SCIENTISTS						
TOTAL EMPLOYED....	13,300	16,400	20,500	21,800	23,100	26,500
	11,700	14,200	17,300	17,800	18,100	20,200
	1,600	2,2.00	3,200	3,900	4,900	6,200
PSYCHOLOGISTS						
TOTAL EMPLOYED.	30,000	33,700	37,800	42,800	46,600	
MEN.	23,700	26,100	28,700	31,100	33,000	35,600
WOTEN.	6,300	7,600	9,200	11,700	13,700	16,600
SOCIAL SCIENTISTS						
			50,500	55,500	59,300	64,000
MENT.	32,200	39,000	43,300	47,000	49,300	52,200
WOMEA	4,100	6,000	7,100	8,600	10,100	11,800
ECONOMISTS						
TOTAL EMPLOYED...........	11,800	13,000	14,000	16,000	17,000	17,900
MEN.	11,200	12,200	13,000	14,800	15,500	16,200
WOHEN.	600	800	1,000	1,200	1,400	1,700
SOCIOLOGISTS/ANTHRO.						
TOTAL EMPLOYED............	7,900	9,500	10,200	11,000 8,100	12,100 8,600	12,700
	6,300	7,200	7,600	8,100	8,600	9,100
W0.10...............		2,300	2,600	2,900	3,500	3,600

[^16]TABY: B-1.
CONTINUED

FIEID	1975	1977	1979	1981	1983	1985
OTHER SOCIAL SCIENTISTS						
TOTAL EMPLOYED..........	16,600	22,500	26,300	28,500	30,300	33,400
MEN.	14,800	19,600	22,700	24,100	25, 200	27,000
WOMEN.	1,800	2,900	3,600	4,400	5,100	6,400
ENGINEERS						
TOTAL EMPLOYED	42,400	45,100	50,300	57,000	61,500	65,900
MENE	42,200	44,800	49,800	56,300 800	60,500 1,100	64,400 1,500
MEMEN.	2,000	2,000	2,300	2,500	3,600 $\mathbf{1 0 0}$	3,700 $\mathbf{1 0 0}$
CHEMICAL ENGINEERS						
TOTAL EPPLOYED	5,400	5,600	6,200	7,100	7,000	7,100
MEN.	5,300	5,60	6,100	7,100	6,900	7,000
Wome				10		100
CIVIL ENGINEERS $\quad 3,800$ [4,100 5,200 6,100 5,300 6,400						
MEAL EMPLO.....	3,800	4,100	5,100	6,1000	5,200	6,300
WOMEN			100	100	100	100
WOMEM	8, ${ }_{\text {¢ }}$	8, ${ }^{+}$	8, 100	-100	- 200	, 300
MATERTALS SCI. ENGINEERS						
MEN.	4,700	5,200	5,700	6,000	7,300 $\mathbf{2 0 0}$	7,000 $\mathbf{2 0 0}$
MECRANICAL ENGINESRS						
TOTAL EMPLOYED.	4,000	4,600	5,200	5,400	5,760	6,600
MON.	4,000	4,600	5,200	5,300	5, 600 100	6,500 $\mathbf{1 0 0}$
MEN. ${ }_{\text {WOMEN... }}$	1,700	1,800	2,300	2,000	2,300	2,300
SYSTEMS DESIGN ENGINEERS $\begin{array}{lllllllll} & 2,400 & 3,600 & 4,900 & 5,300 & 3,900 & 3,700\end{array}$						
MEN.	2,400	3,500	4,800	5,200	3,800	3,500
OTHER ERGINEERS						
MEN.	9,800	9,800	9,700	11, 600	13,300	14,000
WONEN:	, 100	, 100	, 100	, 200	, 300	400
* TOO FEN CASES TO ESTIMATE						
SOURCE: MATIONAL SCIENCE FOUNDATION, SRS						

TABLE B-2. ENPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND RACE/ETHNIC GROUP:

$\begin{aligned} & \text { FIEID AND RACE/ETHNIC } \\ & \text { GROU?(1) } \end{aligned}$	1975	1977	1979	1981	1983	1985
ALL FIELDS						
TOTAL EMPLOYED.	255,900	285,100	314,300	344,000	369,300	400,400
WHITE	232,800	258,300	285,000	309,100	329,900	355,100
BLACK.	2,500	2,700	3,200	4,200	5,000	5,700
NAEIVE AMERICAN	13,600	15,300	22,900	27,400	29,400	34,500
ASIAN/PACIFIC ISLANDER.	13,600	15,300 $\mathbf{2 , 7 0 0}$	22,900 4,100	27,400 4,800	29,900 5,400	34,500 5,900
SCIENTISTS						
TOTAL EMPLOYED.	213,500	240,000	263,900	286,900	307,800	334,500
WHITE........	195,800	219,600	243,000	261,900	280,000	302,570
BLACR.	2,400	2,600	3,100	4,000	4,500	5,200
NATIVE AMERICAN	9,300	11,200	15,400	18,400	19,400	22, 400
	9,300	11,200	15,000 3,400	18,300 4,100	19,300	22,700 5,100
PHYSICAL SCIENTISTS						
TOTAL EMPLOYED.	54,600	57,500	60,200	63,100	64,000	67,500
WHITE.	49,800	52,000	54,600	56,200	56,800	59,600
BIACK. ${ }^{\text {NAT. }}$	500	500	400	600	700	500
NAT IVE AMERICAN ASTAN/PACTETC ISL ANDER		3,40*	4.100		5100	6. 100
ASIAN/PACIFIC ISLANDER. EISPANIC.	3,400	3,400 500	4,700 900	5,800 900	5,700 900	6,600 900
CHEMISTS						
TOTAL EMPLOYED.	35,800	37,400	39,700	41,900	41,300	43,700
WHITE.	32,700	33,900	35,800	37,300	36,500	38,500
BLACR. ${ }^{\text {NATIVE }}$	400	400	300	400	400	400
ASIAN / PACIFIC I S	1,900	2,200	3,200	3,900	3,900	4,300
自ISPPANIC.	1,300	2, 300	3,600	3,600	-700	4,700
PHYSICISTS/ASTRONOMERS						
TOTAL EMPLOYED.........	18,800	20,100	20,600	21,200	22,700	23,700
WHITE.........	17,100	18,100	18,800	18,900	20,300	21,100
	100	100	100 100	200	200	, 100
ASIAN/PACIFIC ISLANDER.	1,100	1,200	1,500	1,900	1,800	2,200
EISPANIC................	100	- 200	1300	1,300	1,200	2,300
MATHEMATICAL SCIENTISTS						
TOTAL EMPLOYED.	13,600	14,600	15,300	15,600	16,400	16,800
WHITE. .	12,300	13,200	13,700	14,000	14,600	14,900
BLACTVE MMERİCAN	100	100	100	200	200	200
ASIAN/PACIFIC ISLANDER.	700	800	1,100	1,200	1,400	1,400
EISPANIC................	100	200	200	200	1200	1,300
TOTAL EMPLOYED.	11,900	12,800	12,800	13,000	13,600	14,000
Waite.	10,700	11,600	11,700	11,800	12,300	12,500
BLACK. ${ }^{\text {NATE }}$	100	100	, 100	, 200	- 200	12,100 *
ASIAN/PACIFIC ISLidiser:	700	700	800	900	1,000	1,000
gispanic.	100	100	200	200	1,200	1,300
STATISTICIANS						
TOTAL EMPLOYED.	1,700	1,800	2,400	2,500	2,800	
WHITE....................	1,600	1,600	2,000	2,200	2,300	2,400
NATIVE AMERICANE.	*	*	*	$\stackrel{\text { * }}{ }$	*	*
ASIAN/PACIFIC ISLANDER. HISPANIC.	100	100	$30 \pm$	300	400	300
COMPUTER/INFORMATION SPECLUISTS						
TOTAL EMPLOYED.	3,500	5,800	6,700	9,100	12,200	15,000
WHITE.....................	3,200	5,000	6,100	8,100	11, 000	13,100
	*	*	$\stackrel{*}{*}$	*	*	$\stackrel{\text { * }}{ }$
ASIAN/PACIFIC ISLANDER.	200	600	600	900	900	1,600
EISPANIC.			100	100	200	, 200
ENVIRONMENTAL SCIENTISTS						
TOTAL EMPLOYED.	12,100	13,000	14,600	15,900	16,500	17,300
White.	11,400	12,100	13,800	15,000	15,500	15,800
BLACR.	$\stackrel{\text { * }}{\text { * }}$	*	$\underset{*}{100}$	*	* ${ }_{\text {* }}$, 100
	300	600°	500	$70{ }^{*}$	800	
	100	100	200	200	200	1,300
EARTH SCIENTISTS						
TOTAL EMPLOYED.	9,500	9,700	11,100	12,000	12,500	13,200
WHITE.	9,000	9,100	10,500	11,300	11,800	12,000
BLACR. ${ }^{\text {NATIVE AMERİCAN }}$.	*	* ${ }_{\text {* }}$	100	* ${ }_{\text {* }}$	*	100
ASIAN/PACIFIC IS	200	400	$40{ }^{*}$	$50{ }^{*}$	$60{ }^{*}$	900
HISPrNIC.	100	100	100	100	200	100
OCEANOGRAPHERS						
TOTAL EMPLOYED.	1,300	1,600	1,700	1,800	1,700	2,000
WHITE	1,200	1,400	1,600	1,700	1,700	1,800
	*	*	*	*	*	*
ASIAN/PACIFIC ISLLASDER.	*	100	100	100	100	100
BISPANIC................	*	*	100	100	*	100
ATMOSPHERIC SCIENTISTS 1000						
TCTAL EMPLOYED..........	1,300	1,700	1,800	2,100	2,200	2,100
GRITE.	1,200	1,600	1,700	2,000	2,100	1,900
BLACIVE AMERİCAN	*	*	*	*	*	*
ASIAN/PACIFIC ISLANDER.	100	100	100	100	100	100
HISPANIC................			*	*	*	100
(1)HISPANICS INCLUDE MmPBERS OF ALL RACIAL GROUPS.* TOO FEW CASES TO ESTIMATE						

TABLE B-2. EMPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY EIELD AND RACE/ETHNIC GROUP:
CONTINUED $1975-85$

FIELD AND RACE/ETHNIC GROUP(1)	1975	2777	1979	1981	1983	1985
LIPE SCIENTISTS						
TOTAL EMPLOYED	63,300	70,500	78,900	84,900	92,800	101,800
WEITEE. ${ }^{\text {BLACK}}$. \cdot.	57,700	64,200	71,900	77,100	83,700 1,100	92,000 1,400
NATIVE AMERİCAN:	100	100	100	+100	+100	1, 100
ASIAN /PACIFIC ISLANDER.	3,400	4,000	5,400	6,300	6,800	7,400
EISPANIC...............	600	, 700	1,000	1,200	1,300	1,400
BIOLOGICAL SCIENTISTS						
TOTAL EMPLOYED	39,000	42,100	45,600	49,600	55,200	59,900
BLACX:	. 600	, 500	, 600		600	, 800
	2,000	2,400	3,300	4,000	4,200	100 4,700
ASIAN/PACIFIC ISLANDER.	2,000	2,400 400	3,300 600	4,700	4,200 700	4,700 800
AGRICULTURAL SCIENTISTS						
TOTAL EMPLOYED.	11,000	12,100	12,800	13,500	14,500	15,50?
	10,300	11,300 100	11,900	12,700 100	13,500 100	14,40C
NATIVE AMERICAN	*	*	${ }^{\text {* }}$	*	*	
ASIAN/PACIFIC ISLANDER.	400 100	500 100	800 200	700 200	800 300	900
MEDICAL SCIENTTSTS						
TOTAL EMPLOYED. . . .	13,300	16,400	20,500	21,800	23,100	26,500
WHITE BLACK.	12,000	14,700 200	18,600	19,600	20,600	23,700
NATIVE AMERİCini			300	300		500
ASIAN/PACIFIC ISLANDER.	900	1,100	1,400	1,600	1,700	1,900
HISPANIC.	200	200	200	300	300	400
PSYCBOLOGISTS						
TOTAL EMPLOYED.	30,000	33,700	37,800	42,800	46,600	52,200
WEITE $\ldots \ldots \ldots \ldots \ldots \ldots$	28,300	31,900	36,500	41,800	44,500	49,500
NATIVE AMERİCAN	${ }^{\text {* }}$	100	100	100	1,100	1, 100
ASIAN DACIFIC ISLANDER.	300	300	400	600	700	800
HISPANIC.	200	300	500	600	700	1,000
SOCIAL SCIENTISTS						
TOTAL EMPLOYED.	36,300	44,900	50,500	55,500	59,300	64,000
	33,100	41,100	46,400 1,000	50,500 1,300	53,800 1,500	57,700
NATIVE AMERICAN	100	100	, 100	, 100	, 100	, 100
ASIAN/PACIPIC ISLANDER.	1,400	1,500	2,300	3,000	3,100	3,800
HISPANIC.	300	500	600	800	1,000	1,100
ECONOM1STS						
TOTAL EMPLOYED.	11,800	13,000	14,000	16,000	17,000	17,900
WHITE.	10,800	11,800	12,800	14,400	15,100	15,800
BLACK.	100	100	300	200	300	300
NATIVE MMERICAN. ${ }^{\text {a }}$. ${ }^{\text {a }}$. ${ }^{\text {a }}$	$50{ }^{\star}$		100	100	+ 100	, 100
ASIAN/PACIFIC ISLANDER. HISPANIC	500 100	600 200	800 200	1,200	$\begin{array}{r}1,300 \\ \hline 300\end{array}$	1,500
SOCIOLOGISTS/ANTERO.						
TOTAL EMPLOYED.	7,900	9,500	10,2, ${ }^{\text {d }}$	11,000	12,100	12,700
WHITE.	7,200	8,700	9,500	10,200	11,100	11,700
	100	100	200	300	400	300
ASIAN/PACIFIC ISLANDER.	200	300	300	300	400	500
HISPANIC.	100	100	200	200	200	200
OTEER SOCIAL SCIENTISTS						
TOTAL EMPLOYED.	16,600	22,500	26,300	28,500	30,300	33,400
WHITE	15,100	20,700	24,100	25,900	27,700	30,100
BLACK. सATIVE $\dot{\text { Mibricicia }}$	300	${ }_{\text {4 }}{ }_{\text {* }}$	600	800	800	1,100
ASIANPACIPIC ISLANDER.	600	600	1,200	1,400	1,400	1,800
EISPANIC.	100	200	200	300	500	500
ENGINEERS						
TOTAL EMPLOYED.		45,100	50,300			65,900
WEITE ${ }^{\text {BLACK}}$. $, \ldots, \ldots, \ldots, \ldots$,	36,900 100	38,600 100	42,000	47,200	49,900	52,600
	100	100	100	300	400	500 100
ASIANTPACIFIC ISLANDER.	4,300	5,000	7,900	9,000	10. 500	11,900
EISPANIC...............	300	400	600	800	2,000	800
AERO/ASTRO ENGINEERS						
TOTAL EMPLOYED.	2,000	2,000	2,400	2,500	3,700	3,800
	1,800	1,800	2,100	2,200	3,100	3,300
	*	*	*	*	*	*
ASIFNTHACIFIC ISLANDER.	200	100	200	300	500	500
TOTAL EMPLOYED	5,400	5,600	6,200	7,100	7,000	7,100
	4, ${ }_{\text {* }}$	4,7**	5,00*	5,60才	5,400	5,100
NATIVE AMERiciant.	*	*	*	*	*	
ASIAN/PACIPIC ISLANDER.	500	700	1,200	1,600	1,500	1,900
HISPANIC.		100	100		100	100
CIVIL ENGINEERS						
TOTAL EMPLOYED.		4, 300	5,200 3,900	6, 100	5,300	
WEITE.	3,100	3,300	3,900	4,800	4,200	5,100
	*	*	*	0	*	
ASIAN/PACIFIC ISLANDER.	600	700	1,200	1,200	1,100	1,200
HISPANIC...............	100			100	100	100

(1)HISPANICS INCLUDE MEMBERS OR ALL RACIAL GROUPS.

* TOO FEN CASES TO EStIMATE

TABLE B-2. ENPLOYED DOCTORAL wUIENTISTS AND ENGINEERS BY FIELD ABD RACE/ETENIC GROUP:
CONTINUED $1975-85$

FIELD AND RACE/ETHNIC GROUP(1)	1975	1977	1979	1981	1983	1985
ELEC. /ELECTRON. ENGINEERS						
TOTAL EMPLOYED.	8,500	8,300	8,600	10,600	12,700	14,200
WHITE.......	7,300	7,200	7,300	8,900	10,300	11,400
BLACK. . .	\pm	*	*	\star	-100	11, 100
NATIVE AMERICAN.	*	*	*	${ }^{\star}$	*	*
ASIAN/PACIFIC ISLANDER.	900	800	1,300	1,600	2,100	2,609
HISPANIC..................	100	100	1,100	1,100	2, 200	2, 200
MATERIALS SCI. ENGINEERS						
TOTAL EMPLOYED	4,800	5,200	5,700	6,100	7,400	7,300
WHITE.	4,300	4,600	4,800	5,100	6,100	5,700
NATIVE AMERICAN.	*	$\stackrel{\text { * }}{\star}$	$\stackrel{\star}{\star}$	$\stackrel{\text { * }}{\star}$	*	*
ASIAN/PACIFIC ISLANDER.	400	600	800	800	1,200	1,500
HISPANIC.	*	100	100	200	1,200	1,500
MECFANICAL ENGINEERS						
TOEAL EMPLOYED.	4,000	4,600	5,200	5,400		
WHITE.......	3,400	3,800	4,100	4,300	4,400	5,100
	*				100	100
NATIVE AMERICAN	*	*	\star	*	*	+
ASIAN/PACIFIC ISLANDER.	600	800	1,200	1,000	1,200	1,400
EISPANIC.	*	*	100	*	100	100
NUCLEAR ENGINEERS						
TOTAL EPPLOYED. .	1,700	1,800	2,300	2,100	2,300	2,400
WHITE.	1,500	1,500	2,000	1,600	1,900	1,800
BLACK. . ${ }^{\text {a }}$	+		*		*	
NATIVE AMERIC.	*	\star	*	*	*	*
ASIAN/PACIFIC ISLANDER.	100	200	200	400	400	500
SYSTEMS DESIGN ENGINEERS						
TOTAL EMTILOYED.	2,400	3,600	4,900	5,300	3,900	3,700
WHITE.	2,100	3,200	4,300	4,800	3,500	3,200
BLACK. . .	*	*	*	*	*	3,
	*	*	*	*	*	*
ASIAN/PACIFIC ISLANDER.	200	300	600	500	300	400
HISPANIC.................	*	*	*	100	100	200
OTHER ENGINEERS						
TOTAL EMPLOYED.	9,800	9,900	9,900	11,800	13,600	14,300
WHITE.	8,700	8,600	8,600	19,900	10,900	11,900
BLACK.*	\star	*	*	100	100	11,100
NATIVE AMERICAN.	*	*	*			
ASIAN/PACIFIC ISLANDER.	800	800	1,200	1,700	2,300	2,000
EISPANIC.	*	100	300	1,200	200	2,100

(1)HISPANICS INCLUDE MEMBERS OF ALL RACIAL GROUPS.

* TOO FEN GASES TO EstTMATE

NOTE: COMPONENTS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT."
SOURCE: NATIONAL SCIENCE FOUNDATION, SRS
table b-3. EMPLOYED DOGTORAL SCIENTISTS AND ENGINEERS BY FIELD, AGE, AND PRIMARY hORK ACTIVITY: 1975 AND 1985

TABLE B-3. EMPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD, AGE, AND PRIMARY HORR ACTIVITY: 1975 AND 1985

[^17]TABLE B－3．EMPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD，AGE，AND PRIMARY HORR ACTIVITY： 1975 AND 1985

AERO／ASTRO EMGINEERS TOTAL EMPLOYED． RESEARCE \＆DEVĖOBPAGENT： BASIC RESEARCB． APPLIED RESEARCH DEVELOPMIENT． MANAGENENT／ADYIN． OP RED． GENERAL TEACHING． CONSULEIMG SALES． PROP．SERVICES PROD．RELATED ACT．

2，000	500	1，100	1，700	1，900	100
1，000	400	700	900	1，000	＊
200	100	100	200	200	－
500	200	400	500	500	＊
300	100	200	300	300	＊
600	100	300	500	600	100
500	100	200	400	400	＊
200	＊	100	100	200	＊
300	＊	100	200	300	＊
＊	＊	＊	＊	＊	＊
＊	＊	＊	＊	＊	＊
＊	＊	＊	＊	＊	＊
＊	＊	＊	＊	＊	＊

5,400
2,000
100
900
1,000
1,900
1,000
900
800
200
100
\star

808888OROB＊＊＊
2,700
1,400
100
600
600
700
400
300
400
100
4,100
1,800
100
900
803
1,300

$$
\begin{array}{r}
4,7 \\
1,9 \\
9 \\
9 \\
9
\end{array}
$$

$$
\begin{array}{r}
1,6 \\
\hline
\end{array}
$$

, 700
900
100
900
900
, 600
900
700
700
100
100
\star
100
$\begin{array}{rr}3,400 & 300 \\ 700 & \star \\ 100 & \star \\ 300 & \star \\ 300 & \star \\ 800 & 100 \\ 300 & 100 \\ 500 & 100 \\ 1,300 & 200 \\ 400 & \star \\ \star & \star \\ \star & \star\end{array}$

2,300
1,100

TOT
3,800
1,900
1,900
1,900

7,
3,
1，
1，
1；
1
6,4
1,
1,
2
2
6,400
1,400
300
500
1,100
500
7,200
8
100
200
808088088889808
－NーNに年
$+* * 8 \%$ NHN

4,200
5,300
500
1,900
2,900
4,200
2,900
1,300
3,000
400
400
100
300

$$
\frac{1}{1}
$$

1， 1,0
1,800
1,000
200
300
500
200
-iN

6,600
2,500
400
800
1,300
1,400
900
500
2,000
300
100
100
100
$\operatorname{DER}^{1985}$
U5

OVNNन N

$$
\begin{array}{r}
1,800 \\
1,000 \\
300 \\
300 \\
400 \\
200 \\
200 \\
600 \\
100 \\
\end{array}
$$

8 ＊888＊8888880
4,600
1,100
300
400
800
1,600
1,800
100
200
5,300
1,200
300
500
400
900
500
400
1,800
600
100
200
300
1,000
400
100
100
300
200
100
100
100
100
$\#$
100

1,000
200
\star
100
100
200
$\#$

12,100
4,7
1,6
2,6
3,7
2,6
1,1
2,3
3
4
1
3
2,100
600
\star
200
400
500
300
200
700
100
\star
\star

$\begin{array}{rr}55 & \text { OVER } \\ & \\ 3,100 & 700 \\ 1,600 & 300 \\ 300 & \star \\ 700 & 100 \\ 600 & 200 \\ 900 & 200 \\ 800 & 100 \\ 100 & \star \star \\ 200 & 200 \\ 100 & \star \\ \star & \star \\ 100 & \star \\ \star & \star \\ & \\ 6,200 & 1,000 \\ 2,700 & 400 \\ 400 & 100 \\ 1,400 & 100\end{array}$ $\begin{array}{rr}55 & \text { OVER } \\ & \\ 3,100 & 700 \\ 1,600 & 300 \\ 300 & \star \\ 700 & 100 \\ 600 & 200 \\ 900 & 200 \\ 800 & 100 \\ 100 & \star \star \\ 200 & 200 \\ 100 & \star \\ \star & \star \\ 100 & \star \\ \star & \star \\ & \\ 6,200 & 1,000 \\ 2,700 & 400 \\ 400 & 100 \\ 1,400 & 100\end{array}$ $\begin{array}{rr}55 & \text { OVER } \\ & \\ 3,100 & 700 \\ 1,600 & 300 \\ 300 & \star \\ 700 & 100 \\ 600 & 200 \\ 900 & 200 \\ 800 & 100 \\ 100 & \star \star \\ 200 & 200 \\ 100 & \star \\ \star & \star \\ 100 & \star \\ \star & \star \\ & \\ 6,200 & 1,000 \\ 2,700 & 400 \\ 400 & 100 \\ 1,400 & 100\end{array}$
 H

，
1,600
1,200

40010
1,600
1,4
2,500
$3 ;$
2,
1,
1,
, 600
300
400
500
400
100
300
800
900
300
400
100
300
100
700
6000
600
700
600
100
300
300
400
100
300

$$
\begin{array}{r}
4,300 \\
2,000 \\
300 \\
1,000 \\
700 \\
400 \\
1,300 \\
200
\end{array}
$$

＊TO FEH CASES tO Estimate

TABLE B-3. EMPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD, AGE, AND PRIMARY HORK ACTIVITY: 1975 AND 1985
CONTINUED

FIELD AND PRIMARY WORK ACIVITY	TOTAL	$\begin{array}{r} \text { UNEER } \\ 35 \end{array}$	$\begin{gathered} \text { UNDER } \\ 40 \end{gathered}$	$\begin{gathered} \text { UNDFR } \\ \text { SO } \end{gathered}$	UNDER 55	S ${ }_{\text {S }}^{\text {OVPR }}$	TOTAL	UNDER 35	$\text { UNDER } \frac{40}{}$	$\begin{array}{r} \text { UNDER } \\ 50 \end{array}$	UNDER 55	$\begin{aligned} & 55 \text { OR } \\ & 0 \vee E R \end{aligned}$
OTHER ENGEAEFRS												
TOTAL ERPILYED........	18,700	4.530	8,800	14,400	16,800	1,900	27,700	3,000				5,300
RESEARCH E DEVELUPHENT.	7,500	2,800	4,700	6,600	7,100	1,900	11,700	1,900	4,600	18,700 8,700	10,100	1,600
BASIC RESEARCH. ${ }^{\text {APDL }}$....	4.900	400 1.500	+ 500	, 800	. 900	${ }^{*}$	11,700	1. 200	$\begin{array}{r}4.800 \\ \hline 600\end{array}$	1,200	1,1,500	1, 200
APILIED RESEARCE..... DEVELOPMTVNT	4,000	1,500	2,600	3,600	3,900	100	5,900	1,300	2,600	4, 500	5,000	900
DEVELOPMIFAT. MANAGEMENT/ADMYN	2,600	1.500 800	1,600	2,200	2,400	200	4,100	1, 400	1,500	2,900	3,600	500
OF RED	5,900 3,900	800 500	2,000	4,000	5,200	700	6,800	300	1,400	4,400	5,300	1,500
$\begin{aligned} & \text { OF RED. } \\ & \text { GENERAI. } \end{aligned}$	3,900	500 200	1,500	2,800	3,500	400	4,500	300	1,200	3,100	3,700	1.800 700
TEACEITG.	3,300	200	1,300	1,200	1,700	300 400	2,300	300	200	1,300	1,600	1700
CONSULTME	- 800	200	1,300	2, 500	2,900 600	400	4,000 1,800	300 200	700 400	2,300	2,800 1,300	1,100 100
SALES	100	100	100	100	100	*	1,600	\pm	200	1,400	1,500	100
	200	100	200	$20{ }^{\text {* }}$	200	*	+ 200	*	${ }^{+}$	100	200	100
2ROD. REMAED ACI....	200	100	200	200	200	\star	3,000	\star	300	800	800	200

* TOO FEN CaSEs to estimate
note: components may not add to total because that sim includes "otier" and "no report."
SOIRCE: NATIONAL SCIENCE FOUNDATION, SRS

52

TABLE B-4. EMPLOYED DOCTORAL SGIENIISTS AND ENGINEERS BY FIELD AND SECTOR OF

FIELD AND EMPLOKMENT SECTOR	1975	1977	1979	1981	1983	1985
ALL FIELDS						
TOTAL PPPLOYED.	255,900	285,10G	314,300	344,000	369,300	400,400
INDUSTRY, TOTAL	64,600	71,600	82,900	99,100	113,500	125,800
SELF-EYPLOYED	6,100	7,400	10,400	14,700	18,000	23,200
4 YR. COLL UNIV	143,600	157,100	167,400	179,200	187,600	202,000
HOSPITALS/CLINIC	7,500	8,600	9,700	9,900	10,400	11,400
NONPRROFIT ORCS	8,300	10,200	12,500	12,600	11,900	13,600
FEDERAL GOVT: STATE/LOCAL GOVT.	19,000	21, 400	23,900	25,100	25,800	$26,300$
STATE/LOCAL GOVT	4,900	5,300	6,100	6,600	7,700	8,200
SCIENTISTS						
TOTAL EMPLOYED	213,500	240,000	263,900	286,900	307,800	334,500
INDUSTRY, TOTAL.	42,500	48,700	56,300	67,300	79,000	87,900
SELF-BPL	5,300	16,400	9,400	13,100	16,400	20, 800
4 YR. COLL	128,800	141,400	150,500	161,200	167,300	180, 200
HOSPITALS/CLINIC	7,500	8,600	9,700	9,900	10,400	11,300
NONPROFIT ORCS	7,100 16,000	8,600 17,900	10,400	10,300 21,300	10,000	11,900
FEDERAL COVT	16,000	17,900 4,900	20,400	21,300	22,000	22,900
PHYSICAL SCIENTISTS						
TOTAL EPLOYED....	54,600	57,500	60,200	63,100	64,000	67,500
INDUSTRY, TOTAL	22,100	23,000	25,000	27,400	28,700	30,300
SELF-BYPLOYED.	24, 600	23, 500	26,900	1,100	28,800	1,200
4 YR. COLL UNIV	24,200	25,600	26,000	26,800	26,500	28,200
HOSPITALS/CLINICS	. 500	. 500	. 500	500	26, 600	28, 500
NONPROFIT ORCS.	1,900	2,000	2, 000	2,100	1,800	2,300
FEDERAL GOVT.	3,700	3,900	4,600	4,300	4,300	4,000
STATE/LOCAL COVI	300	300	300	400	${ }^{2} 200$	300
CEEMISTS						
INDUSTRY, TOTAL	35,800 18,100	37,400	39,700 20,500	41,900	41,300	43,700
SELF-ETPLOYED	18,400	18,300	20,700	22,900	, 600	1,1000
4 YR. COLL. ${ }^{\text {UNI }}$	13,200	13,700	14,200	14,500	13,900	15,000
HOSPITALS/CLINI	. 400	. 400	. 400	- 400	, 400	, 400
NOAPROFIT ORCS	1.100	1,100	1,000	1,100	800	1,000
FEDERAL COVT.	1,700	1,800	2,100	2,100	2,100	1,800
STATE/LOCAL GOVT	200	200	100	300	2, 200	1,300
PHYSICISTS/ASTRONOMERS 20,100						
TOTAL EMPLOYED INDUSTRY IOTAL.	2.8,800	20,100	20,600	21,200	22,700	23,700
SELF-EMPLOYED	4,200	4, 100	4, 200	5, 300	6,200	$\begin{array}{r}6,200 \\ \hline 200\end{array}$
4 YR.COLL UNIV	11,000	11,800	11,800	12,3n0	12,500	13,200
HOSPITALS/CLINIC	-100	, 100	-11. 100	-100	-200	- 200
NOPPROFIT ORGS.	900 2.100	1,000	1, 000	1,000	2900	1,200
PEDERAL COVT	2,100	2,100	1,500 100	1,200 $\mathbf{2} 00$	2,300 100	2,300
MATHEMATICAL SCIENIISTS						
TOTAL MPLOYED.....	13,600	14,600	15,300	15,600	16,400	16,800
IRDUE ${ }^{\text {S }}$, TOTAL.	1,000	1,300	1,500	1,600	2,000	1,900
S ${ }^{\text {SR }}$ C-MPLOYED.	11.100	1, 100	12,200	+1200	2, 200	$\begin{array}{r}1,900 \\ \hline 13\end{array}$
H YR COLI	11,400	11,800	12,100	12,300	12,800	13,000
NONPROFIT ORES.	200	300	300	300		$30{ }^{\star}$
FEDERAL GOVI.	600	690	800	900		300 900
STATE/ROCAL GÓ	*	100	100	90	80	900
MATHENATICIANS						
TOTAL EMPLOYED.	11,900	12,800	12,800	13,000	13,600	14,000
INDUSTRY, TOTAL	800	1,000	1,200	1,200	1,500	1,400
4 SELF-MPLOYED.		10,100 10,500	10,300	1,200 10,600	1,290	. 1100
4 YR. COLL HOSPILILSICLINIC	10,100	10,500	10,300	10,600	10,900	11,100
NONPROFIT ORCS.	200	200	300	200	100	
FEDERAL GOVI STATE/LOCAL COVT	400	${ }_{4}{ }_{\text {* }}$	600	600 *	500	600
STATISTICIANS						
TOTAL EMPLOYED	1,700	1,800	2,400	2,500	2,800	2,800
INDUSTRY, TOTAL	200	300	300	500	500	500
SELF-EMPLOYED.		*		100	*	100
4 YR. COLL	1,300	1,200	1,800	1,700	1,900	1,900
HOSPITALS/CLINICS				*		*
NONPROFIT ORCS.	*	${ }^{\text {* }}$	*	*	100	100
FEDERAL GOVI	200	200	200	300	300	300
CORPUTER/INFORMATION SPECIALISTS						
TOTAL EMPLOYED.:			6,700	9,100	12,200	15,000
.NDUSTRY, TOTAL.	1,400	3,100	3,700	5,200	6,800	8,400
SELF-BTPLOYED.	. 100	+100	. 100	5. 300	, 300	-700
$\begin{aligned} & 4 \text { YR. COLL } \\ & \text { HOSPITIVIV } \end{aligned}$	1,700	2,100	2,400	3,000	3,900	5,109
HOSPITALS/CLINICS		* ${ }^{*}$	***	***	- 100	
NONPROFIT ORCS. FEDERAL COVT.	100	200 300	200 300	300	300	300
FEDERAL GOVT:	200	300	300	400	500	700
STATE/LOCAL GOV..	*	100	*	200	300	200
ENVIROMMENTAL SCIENTI						
TOTAL EMPLOYED.	12,100	13,000	14,600	15,900	16,500	17,300
INDUSTRY, TOAAL.	2,900	3,100	4,200	4,700	5,200	5,300
SELF-EPISYED.	5,300	200	400	500	600	7700
4 YR. COLL	5,800	6,100	6,000	6,600	6,500	7,100
HOSPITALS/CLINICS						
NONPROFIT ORCSE.		2,400	2,700	3. 600	. 600	700 300
STATEILOCAL GOVT.	2,200 400	2,400 500	$\begin{array}{r}2,700 \\ \hline 700\end{array}$	3,100	3,100 800	3,300 700

[^18]53

TABLE B-4. EMPLOYED DOCTORAL SCIENJISTS AND ENGINEERS BY FIELD AHD SECTOR OF
CONTINUED EPLOYKNT: $1975-85$

FEETD AND EPLOMENT	1975	1977	1979	1981	1983	98
EARTH SCIENTISTS						
TOTAL ERRLOYED	9,500	2,700	11,100	12,000	12,509	13,200 4,800
4 SELPEPPLOYED.....:	2, 300 4.500	2, 200 4,500	4,500	4,500 4,800		
Hospirclilictinics:	4,500	4,500	4,500	4,800	4,500	5,000
	- 300	300 1.600	300 1.800	2. 100	2, 300	2, 300
STATE/LOCNL	300	1,600	1.800	2. 100	2,200	2,400
OCEAMOGRAPHERS						
TOTAL EPPLOYED.. INDUSTRY, TOTAL	1.300 100	1.600	1,700	1,800	1,700	2,000
INDUSTRY SELFETOTALD.			200	200	200	200
	800	900	800	1,000	1,100	1,200
NOAPROFIT ORGS....:	100	100	100	100	100	100
	200	300 100	400 100	400	300 100	400
ATMOSPHERRC SCIENTISTS						
	1,300	$\begin{array}{r}1,700 \\ 300 \\ \hline\end{array}$	1,800	2,100	2,200	2,100
$4_{\text {SEL }}$ CRAPLOYED	600	700	700	800	900	1, 1000
HOSPITALS/CLINICS.						
FEDERAL GOVT STATE/LOCNL coòis	40	500	500	200 600 $*$	200 700	200
LIFE SCIENTISTS						
TOTAL EMPLOYED	63,300	70,500	78.9	34,900 13,100		101,800
	-1,200	1,7300	$11 ;$	13,1500	16,400	19,200
	41,500	45;600	50,4	S4,400	57, 300	61, 080
NoNPROFI ORGS..	1,800	2,400	3;000	3;200	3;300	3; ${ }^{100}$
FEDERAL GONT STATE/LOCAL Covi:.......	5,900	S'400	7.200	7,200	7:800	8; ${ }^{\text {a }}$, 200
biological scientists						
TOTAL EPTLOYED..........	39,000	42,100	45,603	49,600	55,200	59,900
	3,500	4.000	4.300	5,300	7,700	9,309
$4{ }^{4}$ YR. COLI ${ }^{\text {Hospit }}$	28,000	29,800	32,000	34,700	36,800	39. 200
HOSPITALS/CLINI S.	1,000	1,100	2,200	1,200	1,300	
	3,400 600	3.400 500	3,900	4,100	4,600	4,800
AGRICULTURAL SCIENTISTS						
TMIAL EPMPLOYED	11,000	12,100	12,800	-3, ${ }^{3}$	14,500	15,500
INDEEF-DPPLOYED.........	2,300	2,500	3, 100	3, 5000	$\begin{array}{r}3,600 \\ \\ \hline\end{array}$	4,900
	6,500	6,900	6,800	7,500	8,000	8,500
NOHPROFIT ORGS.........:	100	100	200	300	300	
	1,700	2,100	2,100	2.200	2,000 300	2,100
MEDICAL SCIENTISTS						
	13,300 2,800	16,400	20,500	21,800	23,100	26,500
SEEFEMPLOYED.:....:	2,600	, 700	1,000	1, ${ }^{1}$, 400	1,500	1,800
	7,100	9.000	11,500	12,200 1,800	12,500	14,100 2,900
NoPProfit orcs........:	${ }^{4} 400$	1.600	-,700	, 600	, 600	2.800
	800 500	900 600	1,100	1. 0000	1.100	1.100 900
PSYCHOLCGISTS						
TOTAL	30,000	33,700	37,800	42,800 10	46,600	52,200
	4, ${ }^{4}, 700$	3,600	5,200	17,100	13,500	12,000
S YRirclil	16,000	16,600 5,400	17.606	19,000	19,400	21,500
NoNPROFIT ORGS.........:	1.100	1,300	1,700	1; ${ }^{1} 100$	1,800	2,100
	1, 1,000	1,300	1,700	1, 1,700	1,200	1, 1,000
SOCIAL SCIENTISTS						
TOTAL EMPLIMEYED	36,300	44,900	50,500	55,500	59,300	64,000 7,400
INDESF-EpPLIXED........:		3, 5000		5,1000	6,800	7,400
	28,200	33,600	36,100	39,100	41,2000	43,800
Nonprofir orgs........:	2,500	2.000	2.706	2,200	2,100	2,300
	2:100	3,200	3,700	4,300	4,300	4,600
ECONOMISTS						
	$\begin{array}{r} 11,800 \\ 1,400 \\ 400 \end{array}$	$\begin{array}{r} 13,000 \\ 1,700 \\ 000 \end{array}$	$\begin{aligned} & 14 ; 900 \\ & 1 ; 900 \end{aligned}$	$\begin{aligned} 26 ; 000 \\ 2 ; \\ \hline, 600 \end{aligned}$	17,080	$\begin{aligned} & 17,900 \\ & 3 ; 000 \end{aligned}$
4 SERFECTI	8,100	8,700	9, 100	10,400	11,300	11.600
HOSPITALSM/CLINICS.....						
	1.300	1.400	$\begin{array}{r}1.600 \\ \\ \hline 100\end{array}$	1.600	1,700	1,700

[^19]$5:$

TABLE B-4. BYPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND SECTOR OF CONIINUED EMPLOMMENT: 1975-85

$\operatorname{FIEED}_{\text {SECTOR }}$ AND EMPLOYMENT	1975	1977	1979	1981	1983	1985
SOCIOLOGISTS $/$ Anthro.						
	7,900	9,500	10,200	11,000	12,100	12,700
NEEF-ETPLOYED.........	100	100	100	200	300	, 100
4 YR. Coll	7,200	8,300	8,600	9,000	9,800	10,000
NOMPROFIT ORGS.	300	400	600	500	400	600
	200 100	100 100	100 200	300 200	100 200	200 100
OTHER SOCIAL SCIENTISTS						
	16,600	22,500	26,300 1,600	28, 500	30,300	33,400
SFFFMpLOED....	(200	1,300	1,500	2,700	1,200	1,300
	12,900	16,600	18,600	19,700	19, 900	22,100
NoNPROIT ORGS.........	800	1,100	1,400	1,300	1,400	1,400
	900 600	1,600	1, ${ }^{1,900}$	2, 1,300	2, $\mathbf{1}, 600$	2,70c $\mathbf{2 , 2 0 0}$
ENGINEERS						
	42,400 22,100	45,100	50,300	37,000	61,500	65,900
SELFEBYPLOXD.........	22, 800	22,000	26,500	31,800	34,500	37,300
	14,800	15,700	17,100	18,000	20, 200	21, 500
NONPRORIT ORGS						
	3,000	3, 400	3,600 $\mathbf{2 0 0}$	3, 800	$\begin{array}{r}\text { 3, } \\ \hline\end{array}$	3, ${ }^{1} \mathbf{4 0 0}$
AERC/ASTRO ENGINEERS						
TOINL EMPLOYED	2,000	2,000	2,400	2,500	3,700	3, ${ }^{3,100}$
4 SELP PMPLOYED...					-100	
	500	600	800	700	900	700
NONPROFIT ORGS	100	100	100	200	300	300
	400	*	$\stackrel{\text { * }}{ }$	400	$\stackrel{500}{*}$	600
ChEMICAL ENGINEERS						
INDUSIRY TOTAi.........	3,900	4,100	4,500	5,300	4,800	5,100
4 SELF-MPL	1,200	1,100	1,200 1,100	5,100	1,100	5,700
	1, ${ }^{*}$	1,20.				
	100	200	300	$\xrightarrow{100}$	200	$\stackrel{100}{200}$
CIVIL ENGINEERS						
	3,800 1,100	4,100	5,200	6,100 2,600	5,300	6,400
	1,100	1,200	1,800	2,600	1, 900	2,400
$4{ }^{4} \mathrm{YR}$	2,000	2,200	2,700	2,900	3,100	3,400
NONPROFIT ORGS.........:	-	-	,	100	*	${ }_{*}^{*}$
	${ }_{-0}^{2 n 0}$	300 200	200 100	${ }_{200}^{100}$	100 100	300 200
ELEC. ${ }^{\text {ELECTRON. ENGINEERS }}$						
TOTAL EMPLOYED.	8,500	8, $\begin{array}{r}\text { 3,900 }\end{array}$	8,600	10,600	12,700	14,200
S SEPP-EMPLOYED........	4, 100	$\begin{array}{r}\text { 3, } \\ \\ 3 \\ \mathbf{2 0 0} \\ \hline 100\end{array}$	4,700 200	6,200	7,600 300	8,600
4 HR	3,100	3,300	2,900	3,600	4,000	4, 600
NONPROFIT ORGS........	100	300 600	200	300	200	200
	500	600	700	500 100	800 100	80
MATERTALS SCI ENGINEERS						
INDUSIRY, TOTAL..........	3,800	3,200	3,500	6,100	7,400	7,800
4 SELF-EMPLOYED.......	1,300	100 1,500	+100	300 1,500	+100	+200
Hospiraisiclinics:...:	1,300	1,500	1,600	1,500	1,800	1,800
NONPROFIT ORGS.........	200	200	300	200	200	200
	$\stackrel{300}{*}$	300	300	400	500	$\stackrel{\text { 4 }}{*}$
MECHANICAL ENGIIEERS						
TOTALS ERY	4,000	4,600 2,100	5,200	5,400	5,700	6,600
4 SELFMPLIOXED	1,100	,100		2,100	2, 100	- 200
	1,800	2,000	2,200	2,100	2,600	2,900
NONPROFIT ORGS. FEDERAL GOVT.	200 200 ¢	200	200 300 *	$\begin{array}{r}300 \\ 300 \\ \hline\end{array}$	100 400	200 300 $*$
NUCLEAR ENGINEERS						
	1,700	1,800	2,300	2,100	2,300	
SELF-BMPLOYD.		1,00*	90************	1,100*	1,400	1,500
	500	${ }_{\text {5 }} \times$	${ }^{900}$	600	760	50
NONPROPIT ORGS.	100	100 200	200	200	100	200
State/Local covit:	*	*	${ }_{*}^{*}$	100	100	100

* TOO FEH CASES TO ESTIMATE

EMPLOYED DOCTORAZ SCIENTIST EMPLOMENT: 1975-85		AND EN	RS BY FIELD AND SECTOR OF			
FIELD AND EMPLOMTENT						
SECTOR	1975	1977	1979	1981	1983	1985
SYSTEMS DESIGN ENGINEERS						
TOTAL ENPLOYED.........	2,400	3,600	4,900	5,300	3,900	3,700
INDUSTRY, TOTAL.	1,200	1,900	3,000	3,000	2,300	2,500
SELF-EMPLOYED.	- 100		*	, 100	2, 200	2, 200
4 YR. COLL . UNIV.	700	800	900	1,000	900	800
HOSPITALS/CLINICS	*	*	*	1, *	*	$\stackrel{*}{*}$
NONPROFIT ORGS.	200	300	500	500	400	200
FEDERAL GOVT	300	400	400	700	300	100
STATE/LOCAL GOVT.	*	*	100	*	*	*
OTHER ENGINEERS						
TOTAL EMPLOYED.	9,800	9,900	9,900	11,800	13,600	14,300
INDUSTRY, TOTAL.	4,700	4,700	4,700	5,900	7,200	1,1800
4 SELP-ETMLOYED.	3 200	300 3,800	+200	5, 400 4,200	+ 400	, 700
4 YR. COLL/CUNIV.	3,800	3,800	3,900	4,200	4,600	5,000
HOSPITALS/CLINICS	200	$30{ }^{\text {* }}$	100	**		*
NONPROEIT ORGS.	200	300	400	500	400	300
	900	800	700	1,000	1,100	1,000
STAIB/LOCAL GOVT.	100	100	*	*	100	100

* TOO FEW CASES TO ESTIMATE

NOTE: COMPONENTS MAY NOT ADD TO TOTAL BEGAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT." SOURGE: MATIONAL SCIENCE FOUNDATION, SRS

TABLE B-5. EMPLOYED NEN DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND SECTOR OF

FIELD AND EMPLOXMENT SECTOR	1975	1977	1979	1981	1983	1985
ALL FIELDS						
TOTAL EMPLOYED.	233,900	257,500	280,900	303,000	320,500	341,900
INDUSTRY, TOTAL	62,500	68,600	78,300	91,900	103,300	112,800
SEF-EMPLOYED.	5,100	6,200	8,500	11,800	13,900	17,500
4 YR. COLL /UNIV.	129,400	139,900	147.300	155,500	160,600	170,300
HOSPITALS/CLINICS	5,700	6,600	7,800	7,700	7,900	8,000
NONPROFIT ORGS. .	7,400	8,800	10,600	10,500	9,600	10,400
FEDERAL GOVT.	18,000	20,100	22,300	23,100	23,300	23,600
SCIENTISTS						
TOTAL EMPLOYED.	191,700	212,700	231,000	246,700	260,000	277,500
INDUSTRY, TOTAL	40,500	45,800	52,000	60,500	69,400	75,800
SELP-EMPLOYED	4,400	5,200	7,500	10,200	12,300	15,100
4 YR. COLL ${ }^{\text {d }}$ UNIV	114,700	124,200	130,600	137,700	140,600	149,300
HOSPITALS/CLINICS	5,700	6,600	7,800	7,700	7,900	7,900
NONPROFIT ORGS.	6,200	7,200	8,600	8,200	7,700	8,800
FEDERAL GOVT	15,000	16,600	18,800	19,400	19,600	19,900
State/local go	3,900	4,100	4,700	4,900	5,700	6,300
PHYSICAL SCIENTISTS						
TOTAL EMPLOYED.	52,100	54,600	57,100	59,300	59,800	62,800
INDUSTRY, TOTAL	21,700	22,400	24,200	26,300	27,300	28,600
SELP-DAPLOYED	2200	2400	24,900	2,100	700	1,100
4 YR COLL IUNIV	22,700	24,000	24,400	25,000	24,600	26,100
BOSPITALS/CLINIC	400	, 500	400	400	500	, 500
NONPROFIT ORGS	1,800	1,900	1,800	1,900	1,600	2,100
FEDERAL GOVT.	3,600	3,700	4,400	4,100	4,000	3,700
STATE/LOCAL GOV	300	300	200	300	200	300
MATH SCIENTISTS						
TOTAL EMPLOYED	12,700	13,600	14,100	14,300	15,000	15,200
INDUSTRY TOTAL	1,000	1,300	1,400	1,500	1,900	1,700
4 YR YR-COLL $/$ UNIV	10,600	10,900	11,200	11,300	11,700	11,900
HOSPITALS/CLINICS	10,60*	10, ${ }^{\text {* }}$	11,20*	11, ${ }_{\text {* }}$	11,	11,90*
NONPROFIT ORGS	200	200	300	200	200	200
FEDERAL GCVT	500	600	800	800	700	800
COMPUTER SPECIALISTS						
TOTAL EMPLOYED.	3,400	5,500	6,300	8,400	10,900	13,300
INDUSTRY, TOTAL	1,400	3,000	3,500	4,800	6,100	7,400
SELP-EMPLOYED.		100	100	390	200	600
4 YR. COLL. IUNIV	1,600	2,000	2,300	2,700	3,600	4,700
NONPROFIT ORGS	100	200	200	300	300	300
FEDERAL GOVT	200	200	300	300	500	700
State/local gov		100		100	200	2 CO
ENVIROMMENTAL SCIENTISTS						
TOTAL EMPLOYED	11,800	12,600	14,000	15,100	15,600	16,200
INDUSTRY TOTAL	2,900	3,000	4,100	4,500	4,900	4,900
SELF-EMPLOYED	5,600	5,900	5,400	6, 500	6, 600	6, 700
BOSPITALSICLINICS	5,600	5,900	5,700	6,200	6,100	6,600
NONPROEIT ORGS.	500	500	600	600	500	600
FEDERAL GOVT	2,200	2,400	2,600	2,900	2,900	3,100
State/Local gov	400	500	600	600	800	, 600
TOTAL EMPLOYED	55,800	61. 400		71,600		
INDUSTRY, TOTAL SELF-EYPLOYED	8,200 1,000	9,200	10,200 1,600	11,800 2,200	$1 \wedge, 600$ 4,600	16,600 3,000
4 SR COLL JUNIV	36,200	39,300	42,400	45,200	46,600	48,000
HOSPITALS/CLINIC	1,800	2,100	2,800	2,500	2,800	3,100
NONPROFIT ORGS	1,500	1,900	2,400	2,400	2,500	2,900
FEDERAL GOVT.	5,500	5,800	6, 500	6,500	6,900	6,900
State/local govi	1,200	1,200	வ,	1,400	1,300	1,700
PSYCHOLOGISTS						
TOTAL EMPLOYED	23,700	26,100	28,700		33,000	35,600
INDUSTRY TOTAL	3,300	4, 400	5,300	7,100	8,900	10,400
4 SELF-EMPLOYED	12,000	2,700	13,700	44,800	6,300 14,100	17,700
HOSPITALSICLINICS	3,400	4,000	4,500	4,600	4,400	4,200
NONPROFIT ORGS.	900	, 900	1,100	1,200	1,100	1,100
FEDERAL GOVT.	800 900	1,100	1,900 1,300	1,000	1,000	1,800
SIATE/LOAL GOVI	900	1,000	1,300	1,100	1,500	1,400
SOCIAL SCIENTISTS						
TOTAL EMPLOYED.	32,200	39,000	43,300	47,000	49,300	52,200
INDUSTRY, TOTAL	2,100	2,700	3,300	4,500	5,700	6,200
SELF-EPPLOYFD			31.700	33, 100	34,700	15,900
4 YR. COLL ${ }^{\text {d }}$ UNIV.	25,000	29,100	31,000	33,200	34,200	35,800
HOSPITALS/CLINICS		1100			, 100	200
NONPROFIT ORGS	1,200	1,600	2,300	1,600	1,500	1,600
FEDERAL GOVT	2,200	2,800	3,300	3,700	3,600	4,000
State/local govt	1,000	1,000	1,300	1,400	1,700	2,000
ENGGINEERS						
TOTAL EMPLOYED.	42,200	$\begin{aligned} & 44,800 \\ & 22,800 \end{aligned}$	49,800	56,300	60,500	64,400
INDUSTRY, TOTAL	22,000	22,800	26,200 1,000	31,400 1,600	33,900 1,600	37,000 2,300
4 YR. COLL IUNIV	14,700	15,600	16,800	17,800	19,900	21,100
HOSPITALS/CLINICS	14, ${ }^{\text {* }}$	*	, 100	*	*	
NONPROFIT ORGS.	1,200	1, 3 , 500	2,000	2,300	1,900	1,700
FEDERAL GOVT.	3,000	3,500	3,500	3,800	3,800	3,700
State/Local govi..	400	400	200	400	400	300

[^20]TABLE B-5. MPLOYED MEN DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND SECTOR OF
CONTINUED

FIECTOR AND EPPLOMMENT	1975	1977	1979	1981	1983	1985
AERO/ASTRO ENGINEERS						
ITSUS ETRY,	2,000	2,000	2,300	2,500	3,600 1,900	3,700 2,000
SELTEMPLOYED........:			900	1,100	1, 100	2,000*
	${ }^{500}$	500	800	700	900	700
NOAPROEIT ORGS.........	100	100	100	200	300	300
	*	400	400	400	500	600
Chemacal magineers						
TOTAL EMPLIMEXED	3,900	5,600	6,100	5,300	6,700	5,000
SELF-biplo ke.	, 100	, 100	, 200	, 100	100	
	1,200	1,200	1,100	1,400	1,700	1,700
NOMPROFIT ORGS.........	100 100	100 200	200 300	${ }_{300}^{100}$	200	100
EEDERAL GOVITL	+	200*	300	${ }^{300}$	200	${ }^{200}$
CITIL ENGINEERS						
	3,800	4, 1,200	5,100	6,000	1,900	6,300
SELP-EPPLOYED.......:	,100	,100	1,200	2, 300	1,300	
4 YR. COLL. IUNIV. hospitals/CLINICS.......	2,000	2,100	2,700	2,800	3,100	3,400
		$30{ }^{*}$		100		
STATE/LOCNL	200	300 200	200	${ }_{200}^{100}$	100	300 100
ELEC / ELEECTRON. ENGINEERS						
TOTNL EMPL	8,500	3,200	4,700	10,500	12,500	13,900
S SELF-EMPLOYED........	4,600	3,900	4, 700	6,1000	7,500	8,300
4. YR. COLLD	3,100	3,200	2,900	3,600	3,900	4,500
NOXPROPIT ORGS...	100	300	200	300		
	500	600	700	500 100	800 100	700
MECEANTCAL ENGINEERS						
TOTAL EMPLOYED	4,000	4,600	2,200	5,300	5,600	6,500
	1,800	2,100	2,400	2,600	2,600	3,100
	1,800	2,000	2,200	2,100	2,500	2,900
NONPROFIT ORGS..	203	200	200	300	100	200
	200	${ }^{300}$	${ }^{300}$	300	300	300
OTEER ENGTNEERS						
	18,600	20,300	22,500	24,900	26,700 15,400	26,900
4 SELP-ETPLOYED			, 400			1,100
	6,100	6,500	7,200	7,200	7,900	7,900
NENPROFIT ORGS..	700 1,500	1,700	1,300	1, 2,400	1,100	1,000
SEDEERAL	1, $\begin{array}{r}\text { 160 }\end{array}$	1,700 100	1,600	2,100	1,900	1,600

* TOO FEH CASES TO ESTIMATE

NOTE: COMPONENTS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT."
SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

TABLE B-6. EMPLOYED HCMEN DOCTORAL SCIENTISTS AND ENGTNEERS BY EIELD AND SECTOR OF

SIELD AND EMPLOYMENT	1975	1977	1979	1981	1983	1985
ALL FIELDS						
TOTAL EMPLOYED.	22,100	27,600	33,400	41,000	48,800	58,500
INDUSTRY, TOTAL.	2,100	3,000	4,600	7,200	10,200	12,900
SELF-GPPLOYED........	14900	17,200	1,900	23,900	4,100	5,700
4 YR. COLL ${ }^{\text {d }}$ UNIV......	14,200	17,200	20,100	23,700	27,000	31,700
HOSPITALSTCLINICS	1,800	2,000	1,900	2,200	2, 600	3,400
NONPROFIT ORGS..........	900	1,400	1,800	2,100	2,300	3,200
FEDERAL COVT STATE $_{\text {LOCAL }}$	1,000	1,300 $\mathbf{8 0 0}$	1,600 1,200	2,000 1,400	2,500	2,700
ScIENTISTS						
TOTAL EPPLOYED.	21,800	27,300	32,900	40,200	47,800	57,000
INDUSTRY, TOTAL.........	2,000	2,900	4,300	6,800	9,600	12,100
	14,100	17, 100	19,900	23, 200 $^{\text {2, }}$	46,100	3,700
HOSPITALS CCLINICS $^{\text {d }}$	1,800	2,000	1,'900	2,200	2, 2 ,600	3, ${ }^{3} 00$
NONPROFIT ORGS. .	, 900	1, ${ }^{2} 00$	1,800	2,100	2,300	3,100
FEDERAL GOVT	1,000	1,200	1,600	2,000	2,400	2,600
Stateilocal GOVT.......	600	800	1,200	1,300	1,700	1,600
PHYSICAL SCIENTISTS						
TOTAL EMPLOYED INDUSTRY, TOTAL............	2,500	$\begin{array}{r}2,900 \\ \hline 600\end{array}$	3,100	3,800 1,100	4,200	4,700
SELF-EMPLOYED ${ }^{\text {a }}$.				1, 200	1,100	1,100
	1,500	1,600	1,600	1,800	1,900	2,100
HOSPITALS/CLINICS......	, 100	1. 100	1, 100	1, 100	1, ${ }^{*}$	2,10**
NONPROFIT ORGS.	100	200	100	200	200	200
	200	200	200	200 100	300 100	300
MATH SCIENTISTS						
TOTAL ETPLOYED.	900	1,000	1,100	1,300	1,400	1,600
INDUSTRY TOTAL	*	100	100	100	200	200
	$80{ }^{*}$	$90{ }^{\circ}$	900	1,000	1,100	1,100
HOSPITALS/CLINICS	*	*	*	1,00*	1,10*	1,10*
NONPROFIT ORGS..........	*	*	*	*	*	100
FEDERAL COVT. state/logal govit.......	*	*	*	100	100	100
COMPUTER SPECIALISTS						
TOTAL EMPLOYED ${ }^{\text {I }}$. .	100	200	400	700	1,300	1,600
INDUSIRY, TOTAL.	100	100	200	400	700	1,000
4 YR. COLL / UNIV	100	100	100	$20{ }^{*}$	100 300	100 500
HOSPITALS/CLINICS			*	*		
NONPROFIT ORGS.	*	*	*	*	*	100
EEDERAL GOVT ${ }_{\text {STO }}$	*	*	*	*	100	**
State/local covt.	*	*	*	*	100	100
ENVIRONMENTAL SCIENTISTS						
TOTAL EMPLOYED.i.	300	400	600	900	900	1,100
INDUSTRY, TOTAL.	100	100	100	200	300	300
4 SELF-EMPLOYED.	*	*	*	*	*	100
	200	200	300	400	400	500
HOSPITALS/CLINICS	*	*	100	*	$10{ }^{*}$	*
FEDERAL GOVT	*	100	100	100	200	200
Staie/Local govi.	*					
LIFE SCIENTISTS						
TOTAL EMPLOYED	7,500	9,100	11,300	13,300	16,200	19,700
INDUSTRY, TOTAL	500	600	900	1,300	1,900	2,600
SELF-ETPLOYED.	100	100	200	400	, 500	700
4 YR , COLL IUNIV	5,300	6,400	7,900	9,200	11,000	12,900
HOSPITALS/CLINICS	400	500	500	500	800	1,000
NONPROFIT ORGS. .	300	500	600	700	700	1,000
FEDERAL GOVT.	500	600	700	800	900	1,100
State/local covt.	200	200	300	300	400	500
PSYCHOLOGISTS						
'IOTAL EMPLOYED.	6,300	7,600	9,200	11,700	13,700	16,600
INDUSTRY, TOTAL	800	1,200	1,800	3,000	4,100	5,100
4 SESP-EMPLOYED.	700	1,000	1,500	2,300	3,100	4,300
4 Y . ${ }^{\text {COLS }}$ /UNIV	3,100	3,500	3,900	4, 900	5,300	6,200
HOSPITALS/CLINICS	1,200	1,400	1,400	1,500	1,600	2,200
NONPROFIT ORGS.	200	300	600	500	700	1,000
FEDERAL GOVT.	100	100	200	200	200	200
State/Local covt.	300	300	400	600	700	500
SOCIAL SCIENTISTS						
TOTAL EMPLOYED.	4,100	6,000	7,100	8,600	10,100	11,800
INDUSTRY, TOTAL	100	200	400	600	1,000	1,200
SELF-ETPLOYED.	100	, 100	5 100	200	, 300	, 500
4 YR. COLL. ${ }^{\text {d }}$ UNIV.......	3,200	4,500	5,200	6,000	6,800	8,000
HOSPITALS/CLINICS......				100	100	100
	200	400	400	600 600	600 700	800
Stateflocal govi'........	100	200	400	300	400	500
ENGINEERS						
TOTAL EMPLOYED.i.	200	300	500	800	1,100	1,500
INDUSIRY, TOTAI............ SELF-EMPLOYED	100	100	300	400	600 $*$	800
4 YR, COLL , UNIV ${ }^{\text {Hes }}$.	100	100	200	200	300	400
HOSPITALS/CLINICS......	*			\star		*
FEDERAL GOVT.	*	*	*	$\stackrel{ }{*}$	100	100
Stateflocal covit.	*	*	*	*	10	100

[^21]TABLE B-6. EMPLOYED HOMEN DOCTORAL SCIENTISTS AND ENGINEERS BY PIELD AND SECTOR OF
CONTINUED CONTINUED EMPLOKMENT: 1975-85

FIELD AND EMPLOMENT SECTOR	1975	1977	1979	1981	1983	1985
AERO/ASTRO ENGINEERS						
TOTAL BMPL OYED	*	*	*	*	100	100
INDIS TRY TOTAL ..	*	*	*	*	*	100
	*	*	*	*	*	
4 YR HOSPITALSICLINIV.	*	*	*	*	*	*
Hospitals ${ }^{\text {cheinics }}$	*	*	*	*	*	
NONPROFIT ORGS. .	*	*	*	*	*	*
PEDERAL GOVT	*	*	*	*	*	*
CHEMICAL ENGINEERS						
TOTAL EMPLOYED	*	*	*	100	100	100
INDUSTRY, TOTAL.	*	*	*	*	100	100
SELP-EMPLOYED.	*	*	*	*		
4 YR COSPITS	*	*	*	*	*	*
NONPROPIT ORGS...	*	\star	*	*	*	*
FEDERAL GOVT.	*	*	*	*	*	*
STATE/LOCAL GOVi	*	*	*	*	*	*
CIVIL EMGINEERS						
TOTAL MPPLOYED	*	*	100	100	100	100
INDUSTRY, TOTAL.	*	*				
4 SELF-EMPLOYED.		*	*	*	*	*
4 YR COLL	*	*	*	*	*	*
HOSPITALS/CLINICS.	*	*	*	*	*	*
NONPRROPIT ORGS.	*	*	*	*	*	*
FEDERAL GOVT.	*	*	*	*	*	*
STATE/LOGAL GOVT.	*	*	*	*	*	*
ELEC /ELECTRON. ENGINEERS						
TOTAL EMPLOYED . . .	*	*	100	100	200	300
INDUSTRY TOTAL..	*	*		100	200	200
4 YR. COLS. UNIV..	*	*	*	*		
Hospitalsiceinics:	*	$\stackrel{ }{*}$	*	*	100	100
NOXPROFIT ORGS. .	*	*	*	*	*	*
FFDERAL GOVT.	*	*	*	*	*	*
State/local govi.	*	*	*	*	*	*
MECEANICAL ENGINEERS						
INDUSTRY TOTAL.	*	*	*	*		
4 SR. COLL TUNIV..	*	*	*	*	*	*
EOSPITALS/ĊLINICS.	*	*	*	*	*	*
NONPROFIT ORGS.	*	*	*	*	*	*
FEDERAL GOVI.	*	*	*	*	*	*
State/LOCAL GOVI.	*	*	*	*	*	*
OTHER ENGINEERS						
TOTAL EMPLOYED...	100	200	300	400	500	800
INDUSTRY, TOTAL.	100	100	100	200	300	500
4 SELP-EEMPL OYED ${ }^{\text {Y }}$	100	$10{ }^{*}$	$10{ }^{*}$	100	$20{ }^{*}$	$20{ }^{*}$
HOSPITALS/CLINICS		*				
NONPROFIT ORGS.	*	*	*	*	*	*
SEATE/LOCAL GOVi̇..	*	*	$*$	*	*	*

* TOO FEH CASES TO ESTIMATE

NOTE: COMPONENTS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REFORT."
SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

TABLE B-7. BPPLOYED WHITE DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND SECTOR OF

[^22]TABLE B-7. EMPLOYED UHITE DOCTORAL SCIENTISTE AND ENGINEERS BY FIELD AND SECTOR OF
CONTLNUED EPLOYENT: $1975-85$

* 100 FEW CASES TO ESTIMATE

NOTE: COAPONENTS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT." SOURCE: MATIONAL SCIENCE FOUNDATION, SRS

[^23]TABLE B-8. EMFLOYED BLACK DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND SECTOR OF
CONTINUED

FIELD AND EMPLOYMENT SECTOR	1975	1977	1979	1981	1983	1985
AERO/ASTRO ENGI NEERS						
	*	*	*	*	*	*
INDUSTRY TELPEETPLOYED.	*	*	*	*	*	*
	*	*	*	*	*	*
Hospitals/CLINICS.......	*	*	*	*	*	*
NONPROFIT ORGS..........	*	*	*	*	*	*
FEDERAL GOVT	*	*	*	*	*	*
STAIE/LOCAL GOVT.......	*	*	*	*	*	*
CHEMICAL ENGINEERS						
INDELP-EMPLOYED..........	*	*	*	*	*	100
	*	*	*	*	*	*
HOSPITALS/CEINICS.......	*	*	*	*	*	*
NONPROFIT ORGS..........	*	*	*	*	*	*
	*	*	*	*	*	*
CIVIL EMGINEERS						
TOTAL EMPLOYED	*	*	*	*	*	100
	*	*	*	*	*	100
	*	*	*	*	*	*
HOSPITALS/CLINICS...	*	*	*	*	*	*
NOAPROFIT ORGS.	*	*	*	*	*	*
	*	*	*	*	*	*
State/Local govt.	*	*	*	*	*	*
ELEC (ELECTRON. EMGINEERS						
	*	*	*	*	100	
	$\stackrel{*}{*}$	*	*	*	*	
	*	*	*	*	10*	
HOSPITALS/CiLINICS	*	*	*	*	100	*
	*	*	*	*	*	*
STATE/LOCAL GOVTİ......	*	*	*	*	*	*
MECRANICAL ENGINEERS						
TOTAL EMPLOYED..	*	*	*			
INDUSTRY, TOTAL.	*	+	*	*	100	100
SELFFEPPLOYED........	*	*	*	*	*	*
	*	*	*	*	100	100
NONPROFIT ORGS...........	*	*	*	*		
FEDERAL GOVT	*	*	*	*	*	*
STATE/LOCAL GOVT.	*	*	*	*	*	*
OTHER ENGINEERS						
TOTAL EMPLOYED	*	100	100			
INDUSTRY, TOTAL.	+	*		100	100	100
SELF-EMPLOYED........	*	*	*	*	*	*
HOSPITALS/CLTNICS	*	*	*	*	*	*
NONPROFIT ORGS....	*	*	*	*	*	*
FEDERNL GOVI.	*	*	*	*	*	*
State/LOCAL GOVT.......	*	*	*	*	*	*

* TOO FEN GASES TO ESTIMATE

NOTE: COMPONENTS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT." SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

FIELD AND EMPLOKMENI SECTOR	1975	1977	1979	1981	1983	1985
ALL PIELDS						
TOTAL EMPLOYED.	13,600	16,300	22,900	27,400	29,900	34,500
INDUSTRY, TOTAL.	4, 600 100	6,100 100	9, 300	11,900	13,500	15, 100
4 YR. COLL. JUNI ${ }^{\text {Y }}$	7,000	7,600	10,600	12,000	12,500	14,800
HOSPITALS/CLINICS	, 300	${ }^{4} 400$	${ }^{400}$	- 500	500	500
NONPROPIT ORGS.	400	600	700	800	800	1,100
FEDERAL GOVT.	700	800	1,100	1,300	1,400	1,800
State/local Govi.	300	300	300	300	400	5 CO
SCIENTISTS						
INDUSTRY, TOTAL.	9,300	11,200	15,000 3,800	18,300 5,400	19,300	22,700
INDUSPRYMPLOYED.	1,900	3, 100	-200	-, 200	, 400	, 400
4 YR. COLL UNIV	5,900	6,200	8,900	10,200	10,100	11,900
HOSPITALSICLINICS	300	400	400	500	500	500
NONPROFIT ORGS...	300	400	400	500	, 500	700
FEDERAL COVI.	500	600	800	1,000	1,100	1,300
STATE/LOGAL COVT	200	200	200	200	300	400
PHYSICAL SCIENTISTS 3 3,000 3,400 4,700						
TOTAL EMPLOYED IOTAL...	3,000 1,100	3,400 1,400	4,700 2,200	5,800	5,700 3,000	6,600
SELF•EYYLOYED						, 100
4 YR. COLL JUNI	1,400	1,400	1,900	2,100	2,000	2,300
HONPROFIT ORGS.	200	200	100	200	100	100
F.DDERAL COVI.	200	200	300	400	400	400
Statellocal govi			100	100		
MATH SCIENTISTS 700 , 1000						
TOTAL ETPLOYED	700	800	1,100	1,200	1,400	1,400 100
INDUSTRY, TOTAL.	100	100	*	100 $*$	300	${ }^{100}$
$4 \mathrm{SR}^{\text {P }}$ COLL UNI	700	600	900	900	1,000	1,100
Hospitalsictinics	*	*	*	*		
NONPROPIT ORGS...	*	*	*	*	*	
PEDERAL GOVT.	*	*	*	*	100	
STATE/LOCAL CȮ̇̇':	*	*	*	*	*	*
INDUSTRY, TOTAL.	*	400*	300	600	600	1,000
4 YR . COLL JUNI ${ }^{\text {V }}$	100	200	200	200	300	600
HOSPITALS/CLINICS					*	
NONPROFIT ORGS.	*	*	*	*	*	*
FEDERAL COYT.	*	*	*	*	*	*
STATE/LOCNL Cȯivi	*	*	*	*	*	*
ENVIRONMENTAL SCIENTISTS 300						
TOTAL EMPLOYED . . .	300	600	500	700	800	1,100
INDUSTRY TOTAL	100	200	200	300	400	400
$4{ }^{4} \mathrm{R}$ COLL	200	300	200	300	300	400
gospitalilciInics	2	+	20	${ }^{*}$	$\stackrel{*}{*}$	*
NENPROFIT ORGS.	100	$10{ }^{\text {* }}$	$10{ }^{*}$	100 100	$10{ }^{\text {* }}$	$20{ }^{\text {* }}$
PEDERAL GOYT ${ }^{\text {STATEILOCAL }}$ GOV̇	100	100	100	100	100	200 100
LIPE SCIENTISTS 3 , 400						
TCS.LL EMPLOYED.	3,400	4,000	5,400	6,300	6,800	7,400
INDISTRY, TOTAL	500 100	700	800	1,100	1,300	1,600
4 SELF-EMPLOYED	2,200	2,500	3,700	4,200	4, 200	4,500
HOSPITALS/CLINICS	2, 200	2, 300	3,300	4,300	4, 400	, 300
NONPROFIT ORGS	100	100	200	200	300	400
FEDERAL GOVT.	200	200	200	300	300	400
State/local govi	100	100	100	100	100	100
PSYCBOLOGISTS 300						
TOTAL EMPLOYED.	300	300	400	600	700	800
INDUSTRY, TOTAL.	*	*	100	100	100	200
SELF-ETPLOYED.		${ }^{*}$		*	100	100
4 YR. COLL (UNIV	200	100	200	300	300	300
HOSPITALS/CLINICS	*	100	*	100	100	100
NONPROFIT ORGS.	*	*	*	*	*	
FEDERAL COVI	*	*	*	*	*	*
State/local coivi	*	\star	*	*	*	*
INDUSTRY, TOTAL.		2,100	2,200	3,400	3, 500	3,800
SELP-EYPLOYED.				100	200	100
4 YR. COLL (UNIV.	1,100	1,100	1,700	2,200	2,100	2,700
HOSPITALS/CLINICS						100
NONPROFIT ORGS...	${ }^{*}$	***	100	${ }^{*}{ }^{*}$	*	100
FEDERAL GOVT	100	100	100	100	200	200
State/local covi..	100	*		100	100	100
TOTAL EMPLOYED.				9,000	10,500	11,900
IKDUSTRY, TOTAL.	2,800	3,100 , 100	5,400 +100	$\begin{array}{r}6,500 \\ \hline 200\end{array}$	7,300 200	7,900
4 YR COLL ${ }^{\text {S }}$ UNIV	1,200	1,400	1,700	1,800	2,400	3,000
HOSPITALS/CLINICS.						
NONPROFIT ORGES.	100	200	300 300	200 300	300 300	400 500
Statellocal ćȯoiti.:	100	100	100	100	100	100

[^24]TABLE B-9. EMPLOYED ASIAN DOCTORAL SCIENIISTS AND ENGINEERS BY FIELD AND SECTOR OF
CONIINUED EPLOYMENT: $1975-85$

FIELD AND EMPLOYMENT SECTOR	1975	1977	1979	1981	1983	1985
AERO/ASTRO ENGINEERS						
TOTAL EMPLOYED...	200	100	200	300	500	500
INDUSTRY, TOTAL.	100	100	200	200	300	300
SELF-EMPLOYED.	*	*	*	*	*	*
4 YR . COLL. UNIV	*	*	*	100	100	100
HOSPITALS/CLINICS	\ldots	*	*	*	*	*
NOMPROPIT ORCS...	*	*	*	*	100	*
FEDERAL COVT.	*	*	*	*	*	100
STATE/LOCAL GOVT.	*	*	*	*	*	*
CHEMTCAL ENGINEERS						
TOTAL EMPLOYED	500 400	700	1,200	*,600	1,500	1,900
INDUSTRY, TOTAL.	400	600	900	1,200	1,100	1,400
4 YR. COLL. UNIV	100	100	100	300	300	400
HOSPITALS/CLINICS	*	*	*	*	*	*
NONPROEIT ORGS.	*	*	*	*	100	*
FEDERAL COVT.	\cdots	*	100	100	100	100
STATE/LOCAL GOVT.	*	*	*	*	*	*
CIVII EMGINEERS						
TOTAS, EMPLOYED..	600	700	1,200	1,200	1,100	1,200
INDUSTRY, TOTAL.	300	400	800	- 900	- 600	- 800
SELF-EMPLOYED.	*	*	100	100	200	100
4 YR. COLL	200	200	300	500	300	300
HOSPITALS/CLINICS	$+$	*	*		*	*
NONPROPIT ORGS.	*	*	*	*	*	*
FEDERAL COVT	100	100	*	*	*	100
STATE/LOCAL CO**.	*	100	100	*	100	*
ELEC /ELECTRON. EMGINEERS						
TOTAL EMPLOYED.:	900	800	1, -3	1,600	2,100	
INDUSTRY, TOTAL.	600	500	1900	1,000	1,600	1,700
SELP-EPPLOYED:	*	**	100	1,00*	1,60	1,70*
4 YR. COLL $/$ UNIV.	300	300	200	400	300	600
HOSPITALS/CLINICS	*	*	*	*	*	*
NONPROFIT ORGS. . .	+	*	100	*	100	100
FEDERAL GOVT	$\stackrel{ }{*}$	100	100	100	100	200
MECRANICAL ENGIHEERS						
TOTAL EMPLOYED...	650	800	1,200			
	400	400	. 700	1.700	- 700	1.800
	*	*	*	*	*	
4 YR. COLL	200	200	300	300	400	500
HOSPITALS/CLINICS	*	*	*	*	*	*
NONPRORIT ORGS. .	*	*	100	100	100	100
FEDERAL FOVT	*	*	*	*	*	*
STATE/LNAAL COVT.	*	*	*	*	*	+
OTHER ENGINEERS						
TOTAL EMPLCYED...	1,500	1,900	2,800	3,400	4,200	4,400
INDUSTRY, TOTAL. SELP-EMPLOYED.	1,000	1,200	2,000	2,600	3,000	2,900
4 SELP-ENPLOYED.		$5{ }^{\text {¢ }}$	$70{ }^{\text {* }}$	100	1,00*	
HOSPITALS/CLINICS	400	50	700	500	1,000	1,100
NONPROFIT -RGS...	100	100	100	100	*	200
FEDERAL GOVT	100	100	10	100	100	200
STATE/LOCAL COVT.	*	*	*	100	100	100

- 7OO FEN CASES TO ESTIMATE

NOTE: COMPONENTS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT." SOURCE: MATIONAL SCIENCE FOUNDATION, SRS

TARLE B-10. EPRLOYED HISPANIC DOCTORAL SCIENTISTS AND EMGINEERS BY FIELD AND SECTOR OF

SEETER ADD ERPLOMENT	1975	1977	1979	1981	1983	1985
Alt pripl ITNUT BRTM Hospithis chinc 	$\begin{array}{r} 2,000 \\ 300 \\ 300 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 100 \end{array}$			$\begin{array}{r} 4,800 \\ 1 ; 300 \\ 2,400 \\ 2.400 \\ 200 \\ 200 \\ 100 \\ 100 \end{array}$	$\begin{array}{r} \mathbf{5}, 400 \\ 1,350 \\ 2,300 \\ 2,200 \\ 200 \\ 400 \\ 100 \end{array}$	$\begin{array}{r} \mathbf{5}, 900 \\ 1,600 \\ 2,400 \\ 2,000 \\ 3000 \\ 300 \\ 200 \end{array}$
SCIEMITSTS TOTAL ${ }_{4}^{4}$ SEP COPLOMD. FEDERUGCONT:	$\begin{array}{r} 1,700 \\ 200 \\ 1,000 \\ 100 \\ 100 \\ 100 \\ 100 \end{array}$	$$	$\begin{array}{r} 3,400 \\ 3,400 \\ 1,200 \\ 1000 \\ 2000 \\ 200 \\ 100 \\ 100 \end{array}$		$\begin{array}{r} 4,500 \\ 1,500 \\ 3,300 \\ 2,3000 \\ 2000 \\ 2000 \\ 300 \\ 100 \end{array}$	
pgysical scientists Hospirititctinics Moybrorit orgs. ${ }_{\text {FTRMRIN }}$			$\begin{gathered} 900 \\ 300 \\ 300 \\ \vdots \\ \vdots \\ 200 \\ \end{gathered}$			
mita scientists Tintis prli SELP-EPLOXD:........ NOOPROFTT ORGS. 			200 $*$ 200 	200 200 \%	$\begin{array}{r}200 \\ \text { 21. } \\ \stackrel{*}{*} \\ \hline\end{array}$	300 20* 0
COMPUTER SPECIALISTS TOTAL EMPLOYEDA․ SELF-EMPLOYED. HOSPITALS/CLINICS NONPROPIT ORGS. FEDERAL GONT			100		200 100 100 20	200 100 100 0
environiental scientists Nomprorit orgs. 	100 100	100 0 100 $*$			$\begin{array}{r}200 \\ 100 \\ \text { 10\% } \\ \hline\end{array}$	
1 ITEE SCIENTISTS Nosproit orci. 	$\begin{aligned} & 600 \\ & 100 \\ & 00 \\ & 100 \\ & 100 \\ & 100 \\ & \end{aligned}$		$\begin{array}{r} 1,000 \\ 100 \\ 600_{*}^{2} \\ 100 \\ 100 \\ 100 \end{array}$	$\begin{array}{r} 1,200 \\ 200 \\ 800_{\star} \\ 100 \\ 100 \end{array}$	$\begin{array}{r} 1,300 \\ \text { 200 } \\ 100 \\ 800 \\ 100 \\ 100 \\ 100 \end{array}$	
${ }^{\text {PSYCBOLOGISTS}}$ SEDERK GOVT	$$	$\begin{gathered} 30 r \\ 20 \\ 200 \\ 100 \\ 0 \end{gathered}$	$\begin{gathered} 500 \\ 1000 \\ 1000 \\ 200 \\ \hline 00 \\ \hline \end{gathered}$	$\begin{aligned} & 600 \\ & 100 \\ & 100 \\ & 300 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 700 \\ & \begin{array}{l} 200 \\ 1200 \\ 2000 \\ 200 \end{array} \end{aligned}$	1,000 300 200 200 100 100 100 100
SOCUN SCIERTITTS ${ }^{\text {TSTAL }}$ STMTOXED AOPTROTIT RRGS. 	$\stackrel{300}{*}$	500			$\begin{array}{r} 1,000 \\ 100 \\ 600 \\ 100 \\ 100 \\ 100 \\ 100 \end{array}$	1,100 100 600 00 00 100 1000
EVGTNERRS SELF-EMPLOME.:.:.:: \qquad	300 100 100	400 200 200 \vdots \vdots \vdots \vdots			$\begin{array}{r} 1,000 \\ 600 \\ 300 \\ 30 \\ 100_{\pi}^{*} \\ 10 \end{array}$	

[^25]TABLE B-10. EMPLOYED HISPANIC DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND SECTOR OR
CONTINUED EMLOAENT: $1975-85$ FIELD
SECTOR
AND ETPLOMAENT

* TOO FE' 6, SE TO ESTIMATE

NOTE: COMPGEDTS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT." SOURCE: NATIONAL SCIENCE FOUNDATION, RS

TABLE B-11. EMPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY WORK

FIELD AND PRIMARY WORK ACTIVITY	1975	1977	1979	1981	1983	1985
ALL FIELDS						
TOTAL EMPLOYE: ${ }^{\text {E }}$,	255,900	285,100	314,300	344,000	369,300	400,400
RESEARCH	82,400	93,500	99,700	120,100	124,800	132,500
BASIC RESEARCH.	38,100	43, 600	47,900	55,200	57,100	61,500
APPIIED RESEARCH.	32,900	36,400	36,800	46,500	47,400	49,100
MANAGEEENT/ASMI	51,700	60,700	72,300	60,500	61,800	69, 600
OF RED.	28,700	30,800	43,100	32,700	31,400	34, 900
GENERA	23,100	29,900	29,200	27,800	30,400	34,700
TEACEING.	91,100	90,800	92,200	105,200	108,200	111,700
CONSULTING	5,500	6,100	9,060	12,100	12,700	14,200
PRLES. SERV̇İĊĖṠ...........	10,300	13,900	18,900	23,700	3,600	31,900
	1,9900	2,200	18,100	3, 3 ,600	26,500	31,500
SCIENTISTS						
TOTAL EMPLOYED. ${ }^{\text {a }}$,	213,500	240,000	263,900	236,900	307,800	334,500
RESEARCE E DEVELOPMENT.	65,900	76,300	81,930	96,700	100,000	106,700
BASIC RESEARCH. ${ }^{\text {B }}$. .	36,500	41,900	46,000	52,400	54,000	57,800
DEVELED RESEARCH......	24,900	27,800	28,800	35,800	35,500	37,700
MANAGEMENT/ADMIN	39,100	46,100	55,'500	45,400	46,300	53,200
OF RED.	20,700	22,100	30,600	22,500	20,900	24,030
GENERAL	18,400	24,000	-4,900	22,900	25,400	29,200
TEACEING	81,800	82,000	82, 900	94,400	96,400	99,200
SALES...	1,100	1,500	2,400	8, 1,900	9,000	10,500
PROF. SERVICES.	10,200	13; 100	18,000	22,300	25,900	30,700
FROD: ¢ RELATED ACT....	1,400	1,700	3,100	2,700	2,300	6,500
PHYSICAL SCIENTISTS						
COTAL EMPLOYED.........	54,600	57,500	60,200	63,100	64,000	67,500
RESEARCE E DEVELOPMENT.	22,700	24,800	23,900	29,600	29,100	29,900
	10,900	12,200	12,100	13,800	34,000	14,300
DEVEEOPEET	2,100	10,500	9,000	12,700	11,500	11,900
MANAGEMENT/ADMI	12,200	13,200	16,200	12,000	11,800	13,000
OF RED.	8,500	8,500	12,600	8,800	-8,800	9,400
GENERAL.	3,700	4,700	3,500	3,200	3,100	3,600
TEACAING,	15,500	14,700	14,500	15,600	14,700	15,200
CONSULTINC	400	- 400	- 800	1,100	- 900	1,200
SALES. ${ }^{\text {PREPV}}$	600	700	800	. 600	900	1,300
	400	400 700	500 1,200	800 100	800	700
CHEMISTS						
	35,800	37,400	39,700	41,90c	41,300	43,700
RESEARCH \& DEVELOPMENT.	13,800	15,500	14,400	18,500	18,000	18,400
BASIC RESEARCH. APPITED DESEARC	6, 100	7,000	7, 7 , 000	8,100	7,900	8,000
APPLIED RESEARCH......	6,300	6,800 1,800	5,500	8,300 2,100	7,600	7,800 2,600
MANAGEMENT/ADMIN:.	9, 400	9,600	2.1,900	9,000	8,300	9,000
OF R\&D.	6,700	6,200	9,600	6,900	6,500	6,800
GENERAL	2,700	3,400	2,300	2,100	1,700	2,200
TEACAING.	9,400	8,700	9,000	9,600	9,000	9,100
CONSULTIN	300	200	, 500	+900	, 700	, 900
SALES...	500	600	700	600	700	1,100
PRJF. SERVICES..	300	300	300	600	500	, 500
PROD. \& RELATED ACT	600	600	1,100	1,000	1,800	1,900
PHYSICISTS/ASTRONOMERS						
TOTAL EMPLOYED..........	18,800	20,100	20,600	21,200	22,700	23,700
RESEARCH \& IEVELOPMENT.	8,900	9,300	9, 500	11,100	11,100	11,500
BASIC RESEARCE.	4,800	5,200	5,100	5,800	6,100	6, 400
APPLIED RESEARCH. .	3,400	3,300	3,600	4,300	3,900	4,100
DEVELOPMENT	700	800	, 800	1,000	1,000	1,100
MANAGEMENT/ADMIN	2,800	3,600	4,300	2,900	3,600	4, 000
OF RED.	1,800	2,200	3,000	1,900	2,300	2,500
GENERAL	1,000	1,400	1,300	1,000	1,300	1,400
TEACEING.	6,100	6,000	5,400	5,900	5,700	6,000
CONSULTI	100	200	200	200	300	300
SALES.	100	100	100	100	200	300
PROF. SERVICES..........	100	100	100	200	300	200
PROD. E RELATED ACT....	100	100	100	100	400	400
MATHEMATICAL SCIENTISTS						
TOTAL EMPLOYED...-. ${ }^{\text {a }}$	13,600	14,600	15,300	15,600	16,400	16,800
RESEARCH E DEVELOPMENT.	2,700	3,300	3,600	3,400	3,400	4,000
BASIC RESEARCH......	1,600	1,800	2,100	1,700	1,800	2,300
APPLIED RESEARCH. . . .	- 800	1,100	1,100	1,200	1,100	1,100
DEVELOPMENT	, 300	. 400	, 500	1, 400	- 500	, 600
MANAGEMENT/ADMIN.	1,200	1,400	1,700	1,300	1,500	1,700
OF RED.	400	1,300	1. 400	1,300	, 500	1,400
GENERAL	800	1,100	1,300	1,000	1:000	1,300
TEACEING.	9,100	9,100	8, 900	9,603	9,700	9,400
CONSULTING	100	100	400	500 100	600 100	500 100
PROF. SERVİCESS	100	*	200	200	100 100	100 100
PROD. RELATED ACT....	*	*	*	*	100	100
MATHEMATICIANS						
TOTAL EMPLOYED.	11,900	12,800	12,800	13,000	13,600	14,000
RESEARCH \& DEVELO PIENT. BASIC RESEARCH	2, 300	2,800	3,000	2,700	2,800	3,200
BASIC RESEARCH........	1,400	1,700	1,800	1,600	1,600	2,100
APPIIED RESEARCH. . . .	600	900	700	800	800	700
MAEVELOPMENT	, 300	300	. 500	, 300	400	400
MANAGEMENT/ADMIN.	1,000	1,100	1,400	1,200	1,100	1,500
OFENERAL.......	300	200	400	200	300	300
TEACHING.	700	900	1,000	900	900	1, 200
CONSULİN	8,100	8,200	7,700	8,300	8,300	8,200
SALES.	*	1	200	200	300	200
EROF. SERYICES.	*	*	100	100	-00	100 100
PROD. \& RELATED ACT....	*	*	*	*	*	100

TABLE B-11. EMPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY WORK
CONIINUED ACTIVITY: $1975-85$

FIELD AND PRIMARY HORK ACTIVITY	1975	1977	1979	1981	1983	1985
STATISTICIANS						
TOTAL EMPLOYED... ${ }^{\text {a }}$	1,700	1,800	2,400	2,500	2,800	2,800
RESEARCH	400	500	600	600	600	800
BASIC RESEARCH.	100	200	300	100	200	200
APPLIED RESEARCH	200	200	300	500	400	400
DEVELOPMENT	*	100	3 C	100	100	200
	200 100	200 100	$3 C 0$ 100	200 100	400 300	200 100
GENERAL	100	200	300	100	109	160
2 Eacaing	1,000	900	1,200	1,300	1,400	1,300
CONSULTING	100	100	100	300	300	200
PROF. SERVICES.	*	*	100	100	*	100
PROD. \& RELATED ACT....	*	*	*	*	100	100
COMPUTER/INFORMATION SPECI	TS					
TOTAL RAPLOYED.-. ${ }^{\text {PESEARE }}$	3,500	5,800	6,700	9,100	12,200	15,000
RESEARCH E DEVELOPMENT.	1,400	2,600	3,000	4,500	5,400	6,100
BASIC RESEAFICE.	200	300	400	600	600	1,000
APPLIED RESEARCH.....	400 800	1,800	2,100	900 3,000	3,900	1,000
MANAGEMENT/ADMİR........	800	1,400	1;700	1,700	2,100	2,100
OF RED.	400	+700	1,000	1,800	1;100	1,700
GENEAL	400	700	1700	900	, 900	1,100
TEACAING	1,100	1,200	1,100	1,500	2,400	2,800
COMSULTING	100	200	300	600	700	900
	$10{ }^{*}$	*	100	100	200	300
PROD. S RELATED ACT.....	10	100	100	200	200	200
ENVIRONMENTAL SCIENTISTS						
TOTAL EMPLOYED.	12,100	13,000	14,600	15,900	16,500	17,300
RESEARCR S DEVELOPMENT.	-600	4,900	5,600	6,300	6,700	6,800
BASIC RESEARCH.	2, 300	2,500	2,700	3,300	3,300	3,600
APPLIED RESEARCH.....	2,100	2,200	2,500	2,700	3,100	2,900
DEVELORMENT MANAGEMENT/ADMIN	2,800	3,100	4.400 3,600	3,300 3,500	300 3,100	2,300 3,500
OF RED.........	2,500	3,100	3,600	3,400	3,100	3,500
GENERAL	1,300	1, ${ }^{1}$, 400	1,200	1,200	1,300	1,400
TEACEING.	3,500	3,500	3,000	3,600	3,490	3,400
CONSULIIN	500	400	800	1,000	1,200	1,400
PROF. SERVİCĖS.	100	100	100	300	100	300
PROD. \& RELATED AC	*	200	100	100	4 CO	500
EARTH SCIENTISTS TOTAL EMPLOYED						
TOTAL EMPLOYED.	9,500	9,700	11,100	12,000	12,500	13,200
BASIC RESEARCH.-....	1,300	1,400	3,1500	1,700	1,400	2,400
APPLIED RESEARCE. . .	1,600	1,600	1;,900	2,100	2,300	2,300
DEVELOPMETT	${ }^{100}$	100	-30	300	200	200
MANAGEREST/ADMI	2,300	2,300	2,800	2,600	2,500	2,600
GEXERAL	1,200	1,200	1,800	-,000	1,200	1,100
TEACHING.	3,100	3,000	2,600	,,100	2,900	3,000
CONSULTIM	$\begin{array}{r}500 \\ \hline\end{array}$	300	700	900	1,100	1,300
PRROE. SEERIİĖS	$10{ }^{\star}$	100	100	$30{ }^{*}$	100	
PROD. \& RELATED AOCT	*	100	100	100	400	400
OCEANOGRAPHERS						
TOTAL EMPLOYED.........	1,300	1,600	1,700	1,300	1,700	2,000
RESEARCH ${ }^{\text {E }}$ DEVEECPMENT.	600	800	900	1,000	1,000	1,100
BASIC RESEARCH.	500	600	500	, 800	- 800	1,000
APPLIED RESEARCH.....	100	200	300	200	200	200
MANAGEMENT/ADMIṄ.......	300	400	400	400	300	400
OF RED	200	300	300	300	300	200
GENERRL	100	100	200	100	100	100
	300	300	100	200	200	200
CONSULTIMG.	*	*	100	100	*	*
	*	\star	*		*	*
	*	*	\star	$\stackrel{*}{*}$	*	*
ATYOSPHERIC SCIENTISTS						
	1,300	1,700	1,800	2,100	2,200	2,100
RESEARCA \& DEVELOPMENT.	900	900	1,000	1,200	1,300	1,200
BASIC RESEARCH.	400	500	700	P00	700	600
APPLIED RESEARCH....	400	400	300	400	600	500
DEVELOPMENT	100	100	${ }^{*}$	*	100	100
MANAGEMENT/ADMIM.	200	400	300	500	300	500
OF RED	200	200	300	400	300	300
GEATERAL..............		100	*	100		100
TEACAING.	200	300	200	300	300	200
COHSULTING	$\stackrel{*}{*}$	*	100	100	100	*
PROF. SERVİCES	$\stackrel{ }{*}$	*	*	*	*	*
PROD. RELATED ACT	*	*	*	*	*	100
LIFE SCIENTISTS						
TOTAL EPPLOYED...ionaio	63,300	70,500	78,900	84,900	92,800	101,800
RESEARCH 6 DEVELOPMENT.	25,700	28,700	32,800	39,000	41,900	44,600
BASIC RESEARCH.	17,500	20,000	23,400	27,200	28,800	31,000
ADCLISD RESTARCH.....	7,500	7,900	8,500	10,700	10,700	11,900
		13,500	-900	12,000	13,509	15,700
	10,	13,500	15,900	12,100	13,000	15,700
GENERAL..........	4, 400	6,200	6,600	5,400	6.2 ,	8,300
TEACHING.	19,900	19,000	19,300	21,700	22,500	22,400
COMSULTIM	900	1,000	1,400	:,500	2,000	2,400
SALES.	300	, 400	1700	+ 500	800	9900
PRRF. SERVICES.-.......	2,000	2,600	3,600	¢. 700	5,400	6,400
PROD. \& RELATED ACT....	600	600	1,200	1,-¢8	1,900	1,900

[^26]TABLE B-11. EMPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND FニTMARY HORK
CONTINUED

FIELD AND PRIMARY WORX ACTIVITY	1975	1977	1979	1981	1983	1985
BIOLOGICAL SCIENTISTS						
TOTAL EMPLOYED.	39,000	42,100	45,000	49,600	55,900	59,900
RESEARCH E DEVELOPMENT.	16,900	19,200	21,800	25,600	28,100	30,100
BASIC RESEARCH.......	13,700	15,700	18,200	21,300	23,100	24,700
APPLIED RESEARCH. . . .	2,900	3,100	3,300	3,900	4,300	4,700
MANAGEMIENT/ADMİ*	4, 200	400	300	. 500	600	700
MANAEMENT/ADMET.	4,700	6,000	6,700	5,100	5,900	7,300
GENERAI	2,100	2,800	2,700	2,800	2,800	3,800
TEACHING.	14,800	13,500	13,600	15,200	15,200	15,500
CONSULTING	400	400	600	800	900	1,100
SALES. ${ }^{\text {PROM }}$	100	100	200	200	400	. 400
PROF. SERVICES..-ici...	300	300	300	800	800	1,000
PRRD. \& RALATED ACr...	200	200	400	400	800	900
AGRICULTURAL SCIENTISTS TOTAL EMPLOYED........	11,000	12,100	12,800	13,500	14,500	15,500
RESEAKCH \& DEVELOEMENT.	4, 11.000	4, 2,600	4,700	5,800	6,200	7, 100
BASIC RESEARCH.	1,200	1,200	1,200	1,500	1,700	1,900
APPLIED RESEARCH.	3,400	3,200	3,300	4,200	4,200	4,800
DEVELOPMENT	200	. 200	, 200	. 200	+400	. 400
MANAGEMENT/ADMIN	2,500	3,000	3,800	2,806.	2,800	3,000
OF RED	1,600	1,900	2,400	1,800	1,600	1,600
GENERAL	800	1,100	1,400	1,000	1,200	1,400
TEACHING.	2,000	2,300	2,100	2,400	2,500	2,300
CONSULTINC	300	300	300	300	500	600
SALES.......	200	200	300	300	300	300
PROF. SERVICES.	200	200	300	400	300	400
PROD. \& RELATED ACI	200	200	400	300	600	500
MEDICAL SCEENTISTS						
TOTAL EMPLOYED...i.	13,300	16,400	20,500	21,800	23,100	26,500
RESEARCH E DEVELOPMENT.	4,000	4,900	6,200	7,600	6,700	7,500
BASIC RESEARCH.	2,600	3,000	4,000	4,400	4,000	4,300
APPLIED RESEARCE	1,200	1,600	1,800	2,700	2,200	2,400
DEVEIOPMENT	, 200	, 300	1,400	2,400	, 500	, 700
MANAGEMENT/ADMI	3,500	4,600	5,400	4,300	4,200	5,400
OF RED.	2,000	2,300	2,800	2,200	1,700	2,000
GENERAL	1,500	2,300	2,500	2,100	2,500	3,400
TEACEING.	3,100	3,200	3,600	4,100	4,800	4,600
CONSULTİ	. 200	3	500	. 500	${ }^{600}$. 600
PRALES. SERVİCES		2100	3, 100	100	100	300
PROD. SERVICES REDAIEP ACT	1,500 100	2,100	3,000 300	3,62\%	4,300 500	5,000 500
PSYCHOLOGISTS						
TOTAL EMPLOYED...........	30,000	33,700	37,800	42,800	46,600	52,200
RESEARCH E DEYELOPMENT.	3,400	4,000	4,800	5,400	5,000	5,200
BASIC RESEFRCH	1,900	1,900	2,500	2,500	3,300	2,300
APPLIED RESEARCH....	1,300	1,800	2,000	2,500	2,400	2,400
DEVELOPMENT	, 200	, 300	2,300	2. 400	2, 300	2, 400
MANAGETENT/ADM	5,500	5,900	6,600	5,800	5,600	6,200
OP RED	1,800	1,600	1,600	1,100	+ 900	1,000
GENERAL	3,700	4,300	5, 0 , 000	4,700	4,700	5,200
TEACEING	11,300	10,800	10,300	12,500	12,700	13,200
CONSULTTM	1,209	1,500	1,509	2,100	2,100	2,100
SALES......	*	. 100	, 100	2,100	2, 200	2, 300
PROF. SERVICES.........	7,400	9,500	12,900	15,000	18, 300	21,700
PROD. \& RELATED ACT. ...		100	100	15,100	+300	21,400
SOCIAL SCIEATISTS						
TOTAL ETYLOYED.	36,300	44,900	50,500	55,500	59,300	64,009
RESEARCH ¢ DEVELOPMENT.	5,400	7,900	8,100	8,500	9,400	
BASIC RESEARCE. ${ }^{\text {a }}$. ${ }^{\text {a }}$.	2,200	3,28,4	2,700	3,200	3,20c	3,300
APPLIED RESEARCH. . DEME OPMENT	3,000	4,300	5,200	5,000	5,800	6,500
DEVELOPMENTI	5200	7500	, 300	300	500	400
MANAGEPENT/ADML	5,900	7,600	9,900	8,900	9,200	10,400
OF RAD.	1,900	2,100	3,300	2,500	1,600	2,100
GENERAL.	4,000	5,600	6,600	6,400	7,700	8,300
TEACEING.	21,400	23,700	25,900	29,900	31,100	32,800
CONSULTIN	21.600	. 900	1,200	1,500	1,500	2,000
SALES.	200	200	. 300	. 400	400	, 600
PROP. SERVICES.	200	400	700	1,100	900	1,300
PROD. f RELATED ACT....	100	109	200	. 300	700	+ 600
ECONOMISTS						
TOTAL EMPLOYED...io....	11,800	13,000	14,000	16,000		
RESEARCH E DEVELOPMENT.	2,400	3,400	3,900	3,900	3,900	4,400
BASIC RESEARCH.	2,600	. 700	, 500	, 800	, 800	, 900
APPLIED RESEARCH.....	1,800	2,500	3,200	3,000	2,900	3,500
MAEVELOPMENT		200 2.300	- 200	2,400	2, 100	3, ${ }^{\text {* }}$
MANAGEMENT/ADMIN.	2,400	2,300	2,800	2,400	2,400	2,700
OF RED. 	1,900 1,500	2,700 1,500	1,300	, 800 1,600	2.500 2,000	2, 300
TEACEING.	1,500	1,500	1,600	1,600	2,000	2,100
CUNSULTIN	- 300	-,400	-,600	7,400	, 800	7,800
SALES....	100	100	100	100	100	300
PROP. SERVICES	100	100	100	200	300	400
PROD. \& REATED ACT....	*	*	*	*	300	200
SOCIOLOGISTS/ARTHRO.						
TOTAL MMPLOYED.	7,900	9,500	10,200	11,000	12,100	12,700
RESEARCE SEVELOPMENT.	1,200	1,600	1,500	1,800	1,800	1,600
BASIC RESEARCH.	700	1,000	1,000	1,000	1,100	1,100
APPLIED RESEARCH.	500	600	500	800	800	500
DEVELOPMENT	*	100			*	*
MANAGEMENT/ADMIN.	800	1,100	1,800	1,300	1,200	1,400
OP RED.	300	300	, 700	300	, 100	, 200
GENERAL.	500	5 700	1,100	900	1,200	
TEACHING.	5,500	5,900	5,900	6,900	7,600	7,900
CONSULTING					100	300
	**	*	${ }^{*}$	100	100	100
	100	*	100	100	100	300

[^27]TABLE B-11. EMPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY hork
CONTINUED

FIEED AND PRIMARY WORK Activity	1975	1977	1979	1981	1933	1985
OTHER SOCIAL SCIENTISTS						
TOTAL ERPLOYEDED	16,600	22,500	26,300	28,500	30,300	33,400
RSASIC RESEARCM.......	1,000	2, ${ }^{2}$, 500	2, 1200	2,400	3,700 1,300	4,100
APPLIED RESEARCE. ${ }^{\text {a }}$.	, 700	1,200	1,400	1,200	2,000	2,400
MANAGLMENT/ADMİ	2,800	4, 200	5,300	5,200	5,300	6,300
OR RED.	2,700	1, 000	1,300	1, 300	1,000	1,300
TEACHING. ${ }^{\text {a }}$,	10, 2100	12,300	, 4,000	15,900	15,700	17,100
CONSULIEG.		-500			, 600	
	100	300	500	200 800	200	200
Prod. \& RELATED ACT....		100	200	200	400	300
Engineers						
TOTAL RESEARGLOYEU	42,400	45,100	50,300	57,000	614,700	65,900
BASIC RESEARCB. ${ }^{\text {a }}$.	1,600	1,700	2,000	23,800	24,100	25,8000
APPLIED RESEARCH....:	8,000	8,700	8,000	10,700	11', 900	11,400
MANAGMEAST/ADMİN:.....:	-2,600	14, 600	16,800	15',200	15', 500	16,400
	8,000	8, 600	12,500	10, 200	\% 0 , 5000	10,900
TEACBITM,	9, 300	8,'800	9,300	10, 700	11',800	12,500
SALES.	1,200	1,600	2,600	3,800	3,700	3,700
			800	700	000	1,400
PROD. \% RELATED ACT...:	400	500	1,000	900	2,100	1,900
AERO/ASTRO ENGESEERS						
TOTAL EMPLOYED	2,000	2,000	2,400	2,500	3,700 1,800	3,800
BASIC RESEARCY $-1 . .$. .	200	100	300	1200	, 300	1,300
AEVELOP RENSEARCE.....	300	S00	400	600	700	700
Manageekent/admen.	600	600	700	800	1,000	1,100
	500 200	500 200	\%00	600	, 800	1,900
teacatig.	300	300	300	200	2000	200
Consuling SALES........	,		*	+	100	100
	*	*	*	100	100	
prod. \& RELATED Act....	*	*		100	*	100
Chemtcal engineers						
TOTAL EMPL	5,400	5,600	6,200	7,100	7,000	7,100
	2, 100	$\begin{array}{r}\text { 2, } \\ +200 \\ \hline 1000\end{array}$	2,200	3,600	3,000	3,2000.
APPLIED RESEARCH.....	900	1,000	900	1,800	1,700	1,500
MANAGEMENT/ADMiNio.....:	1,'900	2,200	2,100	1,600	1,700	1,204
	1,000	1,300	1,800	1,200	1,100	1200
TEACAINGL.:...........	800	700	700			530
Consulting.	200	200	200	400	1, 200	200
SALES. \qquad	100	100	100	200	200	200
PROD. \% RELATED ACT....	100	200	300	200	400	300
CIVIL EMGINEERS						
TOTAL EREARCH	3,800	4,100	5,200	6,100	5,300	6,400
BASIC RESEARCB......:	100	100	1,000	1.200	900	
APPLIED RESEARCE.....	300	500	700	600	400	500
MANAGEMENT/ADMINT.......	300			500	300	500
	900	1, $\mathbf{4 0 0}^{0}$., 100	1,200	800	1,500
GENERERL...............	600	700	600	800	600	700
TEACBING. ${ }_{\text {consuling }}$.	1,400	1,500		2,200	2,100	2,200
SALESTING..............:	40	$\stackrel{3}{*}$	1,100	1,000	100	800 100
	*	*	100	200	100	200
PROD. \& RELATED ACT....	*	*	100		200	305
ELEC / ELECTRON. ERGINEERS						
RESERCI	8,500 3,700	8,300	2,800	10,600 4 400	12,700 5,000	14,200 5,300
BASIC RESEARCE.	- 200	$\begin{array}{r} 3,300 \\ 200 \end{array}$	2,800		5,000	
APPLIED RESEARCH.....	1, ${ }^{3} 500$	1,230	1,200	1,700	2,100	1,900
MANAGEMENT/ADMIN........	2,200	2, 600	3,400	3,000	4, ${ }^{2} 000$	4,200
OR $\mathrm{GESE}_{\text {RED }}$	1, 7000	1,	2,500	2,100	2,800	2,900
TEACEING:	2,200	1,'900	1,800	2, ${ }^{\circ} 00$	2,400	3,000
Sorsestinc	100	100	100	400	400	400
PROR. SERVİES	*	100	100	200	200	400
PROD. R RELATED ACT....	*	*	100	100	300	300
Materials sci enginers						
TOTAL EMPLOYED	4,800	2,400	5,700	6,100	7,400	7,300
BASIC RESEARCH......:	, 300	2,400	2,100	3,060	3,600	3,300
APPLIED RESEARCE.....	1,200	1,500	1,200	1,700	2,000	2,000
mavagere chadiinio....	1,500	1,600	2,200	1,600	2,300	
Of RED	1,200	1,100	1,800	1,200	1.900	1,500
teaching. ${ }^{\text {a }}$.	800	700	8800	880	4800	400
Consulit	100	200	200	300	100	200
	*	*	10	100	${ }_{\text {10 }}$	200
PROD. \& RELATED ACT.	100	100	200	100	300	300

[^28]TABLE B-11. EMPLOYED DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY HORK CONTINUED ACTIVITY: 1975-85

FIELD AND PRIMARY WORK ACTIVITY	1975	1977	1979	1981	1983	1985
MEGEANICAL ENGINEERS						
TOTAL EPMPLYED.......	4,000	4,600	5,200	5,400	5,700	6,600
RESEARCH 6 DEVELOPMENT.	1,500	1,500	1,600	2,200	1,900	2,500
BASIC RESEARCH......	100	100	200	300	200	400
APPLILD RESEARCH. . . .	800	800	600	900	700	800
DEVELOFMENT......	600	600	900	1,000	1,100	1,300
MANAGEMENT/ADMIN	1,000	1,400	1,400	1,000	1,100	1,400
OF RED.	. 600	- 800	1,000	1 700	600	- 900
GENERAL	400	600	+ 400	400	500	500
TEACEING.	1,300	1,300	1,600	1,500	1,900	2,000
CONSULTING	100	200	400	400	300	300
	*		100			
	*	100	100	100 100	$30{ }^{*}$	100
NUCLEAR ENGINEERS						
TOTAL EMPLOYED. 	1,700	1,800	2,900	2,100	2,300 1,100	2,400 1,100
RESEARCH E DEVELOPMENT. BASIC RESEARCH.	600 $*$	600	${ }^{900}$	${ }^{900}$	1,100	1,100
APPLIED R ' GEARCH.....	300	300	400	500	600	600
DEVELOPM	300	300	400	400	500	500
MANAGEMENT/AUMI	600	700	800	700	500	600
OF RED.	400	500	700	500	3.0	300
GENEERAL	200	200	100	100	300	300
TEACAING.	300	200	300	200	300	100
CONSULTING	100	100	100	200	200	300
SALES. SERVİCES	*	*	*	*	**	*
PROD. \& RELATED ACT....	100	*	*	*	*	*
SYSTEMS DESIGN ENGINEERS						
TOTAL EMPLOYED.	2,400	3,600	4,900	5,300	3,900	3,700
RESEARCE E DEVELOPMENT.	1,000	1,400	2,300	2,400	1,7	1,900
BASIC RESEARCE - .		100	200	100	$40{ }^{*}$	100
APELELOPMENT	600	900			1,400	1,100
MANAGEELENT/ADMIN:	700	1,300	1,500	1,500	1,800	1,800
OP RED.	400	900	1,200	1,100	700	600
GEETERAL	300	500	300	400	100	200
TEACEING.:	400	500	600	600	600	400
CONSULTING.	200	200	100	500	300	400
SALES			*	100	100	*
	*	*	100^{*}	100	$\stackrel{*}{*}$	100
OTHER ENGINEERS						
	9,800	9,900	9,900	11,800	13,600	14,300
RESEARCH \& DEVELOPMENT.	3,900	4,100	3,700	4,500	5,600	5,400
APPLIED RESEARCE. ${ }^{\text {BAS }}$.	2,100	2,400	1,600	2,300	3,300	2, 600
DEVEEOPMENT	1, 300	1,300	1,300	1,300	1, 600	1,800
MANAGEFEDAT/ADMIN	3,100	3, 000	3,300	3,700	3,300	3,500
OR RED.	1, 900	1,600	2,400	2,400	2,100	2,100
TEACEIERAL	1,200 ,+ 900	1,400 1,600	$\begin{array}{r}\text { r } \\ 1,600 \\ \hline\end{array}$	1,300 1,900	1,200	1,400
CONSULTING.	1900	-1800	1,400	1,800	1,100	1,000
SALES.- ${ }^{\text {Servicersi......... }}$		100	200	100	200	300
	$10{ }^{\text {* }}$	100 100	$3{ }^{\text {* }}$	200 400	100 600	200 600

* TOO FEW CASES TO ESTIMATE

NOTE: COMPONENTS MAY NOT ADD TO TOTAL BECAUSE TEAT SUM INCLUDES "OTHER" AND "No REMORT." SOURCE: NATIONAL SCIENCE FUUNDATION, SRS

TABLE B-12. EMPLOYED MEN DOCTORAL SCIENTIST: AND ENGINEERS BY FIELD AND PRIMARY HORK

FIELD AND PRTMARY WORK ACTIVITY	1975	1977	1979	1981	1983	1985
ALL EIELDS						
TOTAL EMPLOYED	233,900	257,500	280,990	303,000	320,500	341,900
RESEARCH ${ }^{\text {S }}$ DEVELOPMENT.	76, 400	85,900	90,300	107,700	110,200	116,100
MANAGPMENT OR RED. \cdot....	27,800	29,500	41,000	31,200	30,000	32,800
TEACEING................	81, 700	27,700 80,400	26,200	24,300	26,500	29,700
CONSULTING.	5,100	5,700	8,400	11,000	11,600	12,700
SCIENTISTS						
TOTAL EMPLOYED.	191,700	212,700	231,000	246,700	260,000	277,500
RESEARCH ${ }^{\text {E }}$ DEVELOPMENT.	60,100	68,800	72,800	84,700	86, 700	91,000
MANAGEMENT OF RED	19,800	20,900	28, 600	21, 000	19,300	22,100
TEACEING..........	72,40c	71,700	71, 600	80,600	81,000	21,300
consulting	3,400	4,100	5,800	7,200	7,900	9,'100
P ${ }^{\text {®STCAL SCIENIISTS }}$						
TOTAL EMPLOYED.	52,100	54,600	57,100	59,300	59,800	62,800
RESEARCH F DEVELOPMENT.	21,800	23,600	22,700	27,800	27,100	27,900
	8,400 3,600	8,300 4,500	12,300	8,600	8,500	9.100
TEACEITIG.NAGEMENT.......	3,600 14,500	13,700	13,300	12,900	13,900	3,400
CGNSULTING.	, 400	13,400	13,700	1,100	13,900	1,200
MATH SCIENTISTS						
TUTAL ERPLOYED. ${ }^{\text {a }}$. ${ }^{\text {a }}$	12,700	13,600	14,100	14,300	15,000	15,200
RESEARCE	2,600	3,100	3,500	3,100	3,100	3,700
GENERAL MANAGEMENT	800	300 1,000	1, 200	+300	500	- 300
TEACEING.	8,400	8,300	1,200	1,900	8,800	1,300
CONSULTING	100	100	, 300	8,400	- 500	8,400
COMPUTER SPECIALISTS						
TOTAL MMPLOYED.	3,400	5,500	6,300	8,400	10,900	13,300
RESEARCH	1,300	2,500	2,900	4,200	4,900	5,500
GANAGEMENT MANGEMENT.	400	700	700	800 900	1,000	1,600
TEACAING	1,000	1,100	1,000	1,400	2,200	1,000
CONSULTING	100	100	, 300	1,500	2,600	-800
ENVIROAMENTAL SCIENTISTS						
TOTAL EMPLOYED.........	11,800	12,600	14,000	15,100	15,600	16,200
RESEARCE \& DEVELOPMENT.	4,400	4,700	5,300	5,900	6,300	6,300
GENAGEMEHT MANAGEMENT.	1, 300	1,600	2,300	2,300	1,840	2,000
	13,400	3,400	1,100	1,100	1,300	1,300
CONSULTING	500	, 400	, 800	1,000	1,100	1,400
LIPE SCIEMTISTS						
TOTAL EMPLOYED.	55,800	51,400	67,500	71,600	76,600	
RESEARCE	22,300	24,600	27,700	32,500	33,400	35,800
GENERAL MANAGEMEDT:	5,900	6,900	5,800	6, 200	5,800	6,700
TEACEING.	17,300	16,200	16,000	18,100	5,700	17,400
CONSULTING	, 800	16,900	1,300	1,400	1,700	12,000
PSYCAOLOGISTS						
TOTAL ERPLOYED. ${ }^{\text {Pr }}$	23,700	26,100	28,700	31.100	33,000	35,600
REAAGEMENT DEF R\&D	2,800	3,200	3,800	4, ${ }^{0} 0$	3,700	3,700
GENEPAL MANAGEMENT: ${ }^{\text {a }}$,	3, 000	1,600	4, ${ }^{1}$, 000	3,500	3,600	3,700
TEACHING.	9,100	8,600	3,000	9,300	9,300	9,400
CONSULIING	1,000	1,200	1,200	1,600	1,600	1,600
SOCIAL SCIENTISTS						
TOTAL EMPLOYED.	32,200	39,000	43,300	47,000	49,300	52,200
	4,800	7,000	6,900	7,000	7,400	82,100
GENERAI MANAGEMENT:	1,780	1,800	2,900	2,100	1,300	1,700
TEACHING.	18,800	20,400	22,300	25,200	26,100	26,900
COXSULIIN	600	900	1,100	1,300	1,300	1,700
ENGTNEERS						
TOTAL EMPLOYED				56,300	60,500	64,400
RESEARCH ${ }^{\text {MANAGEMENI }}$ DEVELOPMENT.	16,300	17, 000	17,500	23,000	24,200	25,100
GENERAL MANAGEMENT: . . .	4,600	8,600	12,400	10,100	10,400	10,800
TEACAING.	9,300	8,800	9,300	10,600	11.700	12,200
CONSULTING	1,700	1,600	2,600	3,800	2,760	3,700
AERO/ASTRO ENGINEERS						
TOTAL ERPLOYED........	2,000	2,000	2,300	2,500	3,600	3,700
RESEARCH \& DEVELOPMENT.	1,000	2,900	1,200	1,100	1, 800	1,800
MANAGEMENT OF RED......	50 C	500	600	600	800	1,900
GENERAL MANAGEMENT	200 300	200 300	100	200	200	200
COASULTING	30	300	300	400	500 100	300 100
CHEMICAL ENGINEERS						
TOTAL EMPLOYED.........	5,300	5,600		7,100	6,900	
RESEARCH \% DEVELOPMENT.	2,000	2,000	2,100	3,600	2, 900	3,100
MANAGEMENT OP RED	1,000	1,300	1,800	1,200	-,100	1,200
GENERAL MANAGEMENT	900	900	700	+ 400	, 600	500
TEACAING.	800	700	600	1,000	1,100	900
CONSULTING.	200	200	200	400	200	200
CIVIL ENGINEERS						
TOTAL EMPLOYED. ${ }^{\text {a }}$ -	5,800	4,100	5,100	6,000	5,200	
RESEARCH DEVELOPMENT.	700	900	900	1,206	- 900	1,300
MANAGEMENT OR RED.	400	400	400	1400	200	-,500
GENERAL MANAGEMENT. . .	+600	, 700	600	800	600	700
CONSULTING.	1,400	1,500	1,600	2,100	2,100	2,200
Consulinc...............	400	300	1,100	900	900	800

[^29]TABLE B-12. EMPLOYED MEN DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY WORK
CONIINUED Conlwan Acxivil: 1975-85

FIELD AND PRIMARY KORK Activity	1975	1977	1979	1981	1983	1985
ELEC. (ELECTRON. EMGINEERS						
TOTAL EMPLOYED . ${ }^{\text {a }}$	8,500	8,200	8,500	10,500	12,500	13,900
RESEARCH DEVELOPMENT.	3,600	3,200	2,700	4,300	4, 900	5,100
MANAGEAENT OF RED.	1,500	1,609	2,500	2,100	2,800	2,900
GENERAL I'SAGEMENT.	, 700	1,000	+ 800	800 2,300	1, 2,100	$\frac{1}{3}, 3000$
TEACEING.	2,200 100	1,900 100	1,800 100	2,300 400	2,400 400	3,000
MECHANICAL ENGINEERS						
TOTAL EMPLOYED.	4,000	4,600	5,200	5,300	5,600	6,500
RESEARCE ${ }^{\text {a }}$ DEVELOPMENT.	1,500	1,500	1,600	2,200	1,900	2,500
MRNAGEMENT OF RED.	600	800	1,000	700	600	900
GENERAL MANAGEMENT....	+ 400	600	400	1 400	, 500	500
TEACAING..	1,300	1,300	1,400	1,500	1,800	2,000
cossulting.	1100	1, 200	400	400	300	300
OTHER ENGIPEERS						
TOTAL EMPLOYED..........	18,600	2v, 300	22,580	24,900	26,700	26,900
RESEARCE	7,400	8,500	8,810	10,600	11,900	11,200
MANAGEMENT OF RED......	3,900	4,000	6,100	5,100	5,000	4,400
GENERAL MANAGEMENT.	2,006	2,600	1,710	2,300	2,000	2,200
TEACEING.	3,300	3,100	3, 300	3,400	3,700	3,900
CONSULTING.	800	800	803	1,700	1,700	1,800

* TOO FEW CASES TO ESTIMATE

NOTE: COMPONENTS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER' AND "NO REPORT."
SOURCE: NATIOKAL SCIENCE POURDATION, SRS

$$
\%
$$

TABLE B-13. EMTLOYED WOMEN DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY WORK

FTELD AND PRIMARY KORK Autivity	1975	1977	1979	1981	1983	1985
FIELDS						
TOESEARCH	22,100	27,600	33,400	41,000	48,800	58,500
	+,900	1, ${ }^{1}$,200	2, 3100	1, ${ }^{1}$, 500	12,400	2, 1100
TEACRING MNGEMENI......:	9,400	10, ${ }^{2} \mathbf{2 0 0}$	+3,100	14,500	15,800	17,000
Consuliting..............:			- 600	1,100	1,200	1,400
SCIENTISTS						
RESEARCC E DEVELOMMENT:	21,8000	27,300	32,900	40,200	47,800	57,000
MENAGEMENT OF RED	1,900	1, 2 200	3, 3 3,100	1,500	- 1,300	1, ${ }^{1} 9000$
TEACHING.............:	9,400	10, 400	11,300	13,800	15, ${ }^{\text {, }}$	17, ${ }^{1,400}$
Consulting. .	400			1,000	1,100	1,400
PHYSICAL SCIENTTSTS						
TOTAL EMPLOYED	2,500	2,900	3,100	3,800	4,200	4,700
MANAGEAENT OF RED	1 100	1,200	1,300	1, 200	1,300	2, 300
GENERAL MANAGEIENT.....				+200	200	+200
	1,100	1,100	1,000	1,200	1,200	1, 100
MATH SCIENTISTS						
TOTAL EMPL	900 100	1, 200	1,100	1,300	1,400	1,600
	100					300
GENERAL MANAGEMENT......	$70{ }^{*}$	700	100		100	100
	700	700	${ }^{800}$	900 100	900 100	1,000
COMPUTER SPECIALISTS						
TOTAL EMPLOYED	100	200	400	700	1,300	1,600
RESEARCHE	100	100	200	400	500	
GENERAL MANAGEMENT:	*	${ }^{*}$	*		100	200 100
CEACHING	*	100	100	$\stackrel{100}{*}$	200 100	200 100
ENYTROAMENTAL SCIENIISTS						
RESEARCH ESMED	300 100	400 200	600 300	900	900	1, 100
MANAGEAENI OFF RED		*	100	100	100	100
GENERAL MANAGEMENI.....			100	100	100	100
	${ }^{100}$	100	100	200 100	200 100	200 100
LIFE SCIENTISTS						
TOTAL ESTPLOXED.	7,500	4,100	11,300	13,300	16,200	19,700
MANAGMPENI OF RED.		4, ${ }_{400}$		6,600		
GENERAL MANAGEMENI....:	400	700	800	900	1,100	1,600
Cowsulting..............	2,600 100	2,800	3,300	3,600	4,500	5, 3 3,00
PSYCHOLOGISTS						
TOTAL EMPLOYED. RESEAR $^{\text {a }}$	6,300	7,600	9,200	11,700	13,700	16,600
MANAGEMENT OFE RED	200	300	1,300	1,200	1,400	1,300
GENERAL MANAGEMENT.....	7700	700	1,000			
Cokiging ing	2,200	2,200	1,400 $\mathbf{3 0 0}$	3, $\mathbf{5 0 0}$	3, 5500	3, ${ }^{1} \mathbf{8 0 0}$
SOCIAL SCIENTISTS						
TOTAL REMPLOYED ${ }_{\text {R }}$	4,100	6,900	7,100	8,600	10,100	11,800
MATAGEMENT OF RED	200	200	1,200	1,400		
GENER M MANAGEMENT.....	${ }^{300}$	${ }^{200}$	${ }^{960}$	1,000	1,200	1,400
TEACHING.	2,600	3,300	3,600 100	4, 600 $\mathbf{2 0 0}$	5, 2000	5,900
ENGINEERS						
	200	300 100	500	800	1, 100	1,500
	100	100	300 100	400	600 100	700
GENERAL MANAGEMENT......	*	$10{ }^{*}$	$10{ }^{\circ}$		$20{ }^{*}$	100 300
Cotsuluing ${ }^{\text {a }}$,	*	10	10	100	*	${ }_{*}$
AERO/ASTRO ENGTEERS						
	*	*	*	*	100	100
	*	*	*	*	*	*
GEEALCINGANAGEMENT.......	*	*	*	*		*
	*	*	*	*	*	*
CHEMrCal engineers						
TOTAL EMPLOYED ${ }_{\text {RSE }}$	*	*		100	100	100
MANAMTENT OF RED	$\stackrel{*}{*}$	*	$\stackrel{*}{*}$	*	10	100
TEAECINGMAAGEMENT.......	*	*	*	*	*	*
Consulting...............	*	*	*	*	*	*
TOTAL RESEARCE ${ }_{\text {EYED }}$			100	100	100	100
MANAGEEENT OF RESD....	*	*	*	*	*	*
GENERAL MANAGEMENT.	*	*	*	*	*	
COKSULTING:	*			*		*

* TOO FEW CASES TO ESTIMATE

TABLE B-13. EMPLOYED HOMEN DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY HORR
CONIINUED

FIELD AND PRIMARY WORK ACTIVITY	1975	1977	1979	1981	1983	1985
ELEC. ELECTRON. ENGINEERS						
TOTAL EMPLOYED..........	*	*	100	100	200	300
RESEARCH \& DEVELOPMENT.	*	*	*	100	100	200
MANAGLMENT OF R\&D......	*	*	*	*	*	*
GENERAL MANAGEMENT.	*	*	*	*	*	*
TEACHING...........	*	\star	*	*	*	100
CONSULTING	*	*	*	*	*	*
MECRANICAL ENGINEERS						
TOTAL EMPLOYED. .	*	*	*	*	100	100
RESEARCH E DEVELOPMENT.	*	*	*	*	*	*
MANAGEMENT OF RED......	*	*	*	*	*	*
GENERAL MANAGEMENT. . . .	*	*	*	*	${ }^{*}$	*
TEACATNG.................	\star	\star	*	\star	*	*
CONSULTING.	*	*	*	*	*	*
OTHER ENGTNEERS						
TOTAL EMPLOYED.	100	200	300	400	500	800
RESEARCT \& DEVEL-OPMENT.	100	100	100	200	300	400
MANAGEMENT OF RED......	*	*	*	$\stackrel{3}{*}$	100	100
GENERAL MANAGEATENT. . . .	*	*	*	*	*	*
TEACHING. ${ }^{\text {P }}$.	*	*	*	*	100	100
CONSULTING.	*	*	*	+	*	

* TOO FEH CASES TO ESTIMATE

NOTE: COMPONENTS MAİ NOT ADD TO TOTAL BEGAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT." SOURCE: NATIONAL SCIENCE FOUNDAIION, SRS

TASE B-14. ENPIOYED WHITE DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY WORK

FIELD AND PRIMARY WORK ACTIVITY	197.5	1977	1979	1981	1983	1985
ALL FIELDS						
TOTAL EMPLOYED.	232,800	258,300	285,000	309, 100	329,900	355,100
RESEARCH ${ }^{\text {E A }}$ DEVELOPNENT.	72,900	81,600	88,900	104,200	107,300	113,100
MANAGEMENT OF R\&D......	26,800	28, 600	37,800	29,500	28,600	30,800
GENERAL MANAGEMENT. . . .	21,800	28,000	27,600	26,300	28,400	32,400
TEACAING.	83,600	83,300	84,400	95,900	97,800	100,200
CONSULTING	5,00:	5,600	7,900	10,800	11,300	12,800
SCIENTISTS						
TOTAL EMPLOYED.........	195,800	219,600	243,000	261,900	280,000	302,500
RESEARCE \& DEVELOPMENT.	59,400	68,000	74,900	86,400	89,200	94,100
MANAGEMENT OF RED......	19,400	20,600	27,500	20,500	19,300	21, 800
GENERAL MANAGEMENT. . . .	175,400	22,600	23,500	21,600	23,900	27,300
	75,300 3,600	75,600	76,300	86,300	87,800	89,900
PRYSICAL SCIENTISTS 49,800						
RESEARCH E DEVELOPMENT.	20,400	22,000	21,700	25,400	25,100	25,700
MANAGEMENT OF R\&D......	8,000	7,900	11,100	8,000	8,100	8,400
GENERAL MANAGEMENT	3,500	4,400	3, 400	2,900	2,800	3,300
TEACEIMG........	14,200	13,400	13,100	14,400	13,300	13,700
CONSULTING..	400	+ 400	- 800	1,100	- 800	1,100
MATH SCIENTISTS						
TOTAL EMP	12,300	13,200	13,700	14,000	14,600	14,900
RESEARCH \& DEVELOPMENT.	2, 400	2,900	3,200	3,100	3,100	3, 600
MANAGEMENT OF R\&D......	2.) 400	2,300	+ 400	+300	- 400	- 300
GENERAL MANAGEMENT. . . .	880	1,000	1,200	1,000	900	1,300
TEACEING.........	8,200	8,200	8,100	8,600	8,700	8,300
CONSULTING	100	100	300	400	- 500	400
COMPUTER SPECIALISTS						
TOTAL EMPTOYED.	3,200	5,000	6,100	8,100	11,000	13,100
RESEARCH DEEVELOPMENT.	1,300	2,200	2,800	4,000	4,800	5,200
MANAGEMENT OF RED......	, 400	2,700	2900	- 700	1,000	1,400
GENERAL MANAGEMENT	400	600	600	900	1,900	1,000
TEACEING.	900	1,000	1,000	1,300	2,100	2,600
CONSULTING	100	100	200	- 500	- 700	-900
ENVIRONMENTAL SCIENTISTS						
TOTAL EMPLOYED.	11,400	12,100	13,800	15,000	15,500	15,900
RESEARCH E DTVELOPMENT.	4, 200	4,400	5,200	6,000	6,300	6,100
MANAGEMENT OF RCD......	1,400	1,500	2,200	2,200	1,700	1,900
GENERAL MANAGEMENT	1, 3 , 4000	1,400 3,400	1,200	1,200	1, 3,300	1,400
COASEUING	3,400 400	3,400 300	$\begin{array}{r}\text { 2,900 } \\ \mathbf{8 0 0} \\ \\ \hline\end{array}$	3,400 1,000	3,300 1,100	3,200 1,300
LIFE SCIENTISTS						
TOTAL EMPLOYED.	57,700	64,200	71,900	77,100	83,700	92,000
RESEARCH ${ }^{\text {L }}$ DEVELOPMENT.	22,900	25,400	29,700	35,000	36,400	39,400
MANAGEMENT OF RED.	5,800	6,800	8,300	6,100	5,700	6,800
GENERAL MANAGEMEN	4,200	5,800	6,200	5,100	6,300	7, ? 20
TEACAING.	18,400	17,700	17,700	19,900	20,400	20,5is
CONSULTIN	- 800	1,000	1,300	1, 500	1,800	2,200
PSYCzOLOGISTS						
TOTAL AMPLOYED..........	28, 300	31,900	36,500	41,000	44,500	49,500
RESEARCH F EEVELOPMENT.	3,300	3,800	4,600	5,100	4,900	5,000
MANAGEMENT OF R\&D. . . .		1,500	1,500	1,000	+ 800	+ 900
GENERAL MANAGEMENT	3,500	4,100	4,700	4,500	4,500	4,900
TEACEING.	10,700	10,200	10,000	11,900	12,100	12,400
CONSULTING	1,200	1,400	1,400	2,000	2,000	2,000
SOCTAL SCIENTISTS						
TCAAL EMPLOYED.	33,100	41,100	46,400	50,500	53,800	57,700
RESEARCH E DEVELOPMENT.	4,900	7,200	7,800	7,900	8,700	9,200
MANAGEMENT OF RED......	1, 800	1,900	3,000	2,300	1,500	2,000
GENERAI MANAGEMENT	3,700	5,200	6,100	6,000	7,200	7,600
TEACHING.	19,500	21,700	23,500	26,800	27,900	29,000
CONSULTING	600	900	1,100	1,400	1,400	1,800
ENGI NEFRS						
RESEARCH ${ }^{\text {\& }}$ DEVELOPMENT.	13,500	13,600	14,000	17,700	18,100	19,100
MANAGEMENT OF RED.	7,400	8,000	10,300	8,'900	9,300	8,'900
GENERAL MANAGEMENT. . . .	4,400	5,500	4,200	4,700	4,500	5,100
TEACHING...........	8,200	7,700	8,200	9,600	10,100	10,300
CONSULTING	1,400	1,400	2,000	3,000	3,000	3,100
AERO/ASTRO ENGINEERS						
TOTAL EMPLOYED........	1,800	1,800	2,100	2,200	3,100	3,300
RESEARCH \& DEVELOPMENT.	- 900	1,800	1,100	2,800	1,400	1,400
MANAGEMENT OF R\&D......	400	400	- 600	600	- 800	1. 900
GENERAL MANAGEMENT.....	200	200	100	200	200	200
TEACHING.	200	300	300	400	500	300
CONSULTING.	*	*	*	+	100	100
CHEMICAL ENGINEERS						
TOTAL EPPLOYED.........	4,700	4,700	5,000	5,600	5,400	5,100
RESEARCH \& DEVELOPMENT.	1,700	1,500	1,300	2,400	2,100	1,900
MANAGEMENT OF R\&D......	1,000	1,100	1,400	1,000	2, 900	1,900
GENERAL MANAGEMENT	800	800	- 600	- 400	600	500
TEACEING.	700	600	500	800	800	700
CONSULTING.	200	200	200	400	200	200
GIVIL ENGINEERS						
TOTAL MMPLOYED. ${ }^{\text {P }}$,	3,100	3,300	3,900	4,800	4,200	5,100
RESEARCH \& DEVEI,OPMEN'S.	500	+ 500	- 500	- 800	- 700	1,000
MANAGEMENT OF R\&D. GENERAL MANAGEMENT	400 500	300	300	300	100	1,400
GENERAL MANAGEMENT.....	500 1,200	600 1.200	$\begin{array}{r}600 \\ \hline 100\end{array}$	2. 700	+ 500	700
CONSULTING:	1,200	1,200	1,500 600	2, 000	1,900 $\mathbf{5 0 0}$	2,000 500

[^30]TABLE B-14. ENPLOYED WHITE DOCTORAL SCIENTISTS AND ENGINEERS BY PIELD AND PRIMARY WORK
CONTINUED ACTIVITY: $1975-85$

FIELD AND PRIMARY WORK ACTIVITY	1975	1977	1979	1981	1983	1985
ELEC. (ELECTRON. ENGINEERS						
RESEARCH 5 DEVELOPMENT.	2,900	2,700	2,190	3,300	3,600	3,800
MANAGEMENT OF R\&D......	1,500	1,500	2,200	1,900	2,500	2,400
GENERAL MANAGEMENT	600	. 900	800	800	1,000	1,200
TEACHING.	1,900	1,700	1,700	2,000	2,100	2,500
CONSULTING	100	100	100	2,300	400	2,300
MECEANICAL ENGINEERS						
TOTAL ENPLOYED.:	3,400	3,800	4,100	4,300	4,400	5,100
RESEARCH DEVELOPMENT.	1,200	1,100	1,100	1,600	1,300	1,700
MANAGEXENT OF RED.	600	700	800	500	500	700
GENERAL HANAGEMENT	300	500	400	400	400	500
TEACEING.	1,100	i, 100	1,300	1,400	1,500	1,600
CONSULTING	100	, 200	- 300	, 300	, 300	, 300
OTEER ENGINEERS						
TOTAL EMPLOYED........	16,700	17,900	19,700	21,400	22,400	22,700
RESEARCH \& DEVELOPMENT.	6,400	6,900	7,700	8,900	9,100	9,300
MANAGEMENT OF R\&D......	3,600	3,800	5,100	4,500	4,500	3,600
GENERAL MANAGEMENT......	1,900	2,400	1,700	2,200	1,800	2,100
TEACEING.	3,000	2,800	2,900	3,100	3,300	3,200
CONSULTING.	700	700	800	1,300	1,500	1,600

* TOO FEN CASES 20 ESTIMATE

NOTE: COKPONENTS MAZ NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT." SOURCE: MATIONAL SCIENCE FOUNDATION, SRS

TABLE B-15. EMPLOYED BLACK DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY WORK

FIELD AND PRIMARY WORK ACTIVITY	1975	1977	1979	1981	1983	1985
ALL FIELDS						
TOTAL EMPLOYED.........	2,500	2,700	3,200	4,200	5,000	5,700
RESEARCH E DEVELOPMENT.	500	600	600	. 800	1,000	1,100
GENERAL HANAGEEENT.....	200	300	400	300	300	1300
	2,100	1,000	1,200	1,700	1,800	2,200
CONSULTING..................	1,100	1,00	1,100	1,100	1,200	2,200
SCIENTISTS						
	2,400	2,600	3,100	4,000	4,500	5,200
RESEARCH	400	600	600	700	800	, 900
GENERAL MANAGEMENT......	200 400	300 400	400 500	300 800	200	200
TEACHING...............	1,100	900	1,200	1,600	1,700	2,000
CONSULTING..............			${ }^{100}$	100	-100	2, 200
PGYSICAL SCIENTISTS 500						
TOTAL EMPLOYED........	500	505	400	600	700	500
RESEARCH ¢ DEVELOPMENT.	200 100	200	100	200	200	300
MANAGEMENT OF RED	100 $*$	100	100	100 100	100 100 100	100
TEACHING CONSULTING:	200	100	100	200	200	100
MATH SCIENTISTS						
	100	100	100	200	200	200
RESEARCH E DEVELOPMENT.	*	*	*	*	*	200
GENERAL MANAGEMCNT.....	*	*	*	*	*	*
TEACHING....	100	100	100	160	100	100
CONSULTING.	*		,	,	,	*
COMPUTER SPECIALISTS TOTAL EMPLOYED						
RESEARCH \& DEVELOPMENT.	*	*	*	*	*	*
MANAGEMENT OF RED......	*	*	*	*	*	
GENERAL MANAGEMENT. . . .	*	*	*	*	*	*
CEACHING.	*	*	*	*	*	*
CONSUTING.	*	*	*	*	*	*
ENVIRONMENTAL SCIENTISTS						
TOTAL EMPLOYED... ${ }^{\text {E }}$.	*	*	100	*	*	100
RESEARCH	*	*	100	*	*	10
MANAGEMENT OF RED......	+	*	*	*	*	
GENERAL MANAGEMENT. . . .	*	*	*	*	*	*
TEACHING.	*	*	*	*	*	
CONSULTING.	*	*	*	*	*	*
LIFE SCIENTISTS						
TOTAL EMPLOYED.........	700	800	900	1,000	1,9,00	1,400
RESEARCH \& DEVELOPMENT.	200	200	200	. 300	, 300	1, 300
MANAGEMENT OF RED. ${ }^{\text {G }}$. .	100	100	100	100	100	100
GENCRALGMANAGMENI.	$\frac{100}{}$	100	100	100	300	300
CONSULTINĠ..................	30	20	*	400	400	500
PSYCHOLOGISTS						
TOTAL EMPLOYED.......	400	500	600	000	1,000	
	*	100	100	100	1,000 100	1,200
GENERAL MANAGEMENT. . . .	100	100	100	100		
TEACHING..............	200	200	200	300	100 300	200
consulting...............	+	*	**	100	300 100	100
SOCIAL SCIENTISTS						
TOTAL EMPLOYED........	600	700	1,000	1,300	1,500	1,700
RESEARCH MANGENENT DEVELOPRIENT.	100	100	-100	100	- 200	1,100
GENERAL MANAGEMENT:.....	100	$10{ }^{\circ}$	100	300		
	300	300	400	600	300	+ 300
CONSULTING.	*	*	40	60	70	1,000
ENGINEERS						
	100	100	100	300	400	500
RESEARCH E DEVELOPMEITT.	$\stackrel{*}{*}$	$\stackrel{\text { * }}{*}$		100	200	200
MANAGEAENT OF RGD. . . .	*	*	*	100	100	***
TEACHING...............	*	*	*	*	100	100
CONSULTING................	*	*	*	*	10	100
AERO/ASTRO ENGI NEERS						
TOTAL EMPLOYED..........	*	*	*	*	$*$	*
RESEARCH DEVELOPMENT.	*	*	*	*	*	*
MANGM ${ }^{\text {a }}$	*	*	*	*	*	*
CEEERAI. MANAGEMENT. . . .	*	*	*	*	*	*
CONSLLTING..................	*	*	*	*	*	*
CHEMICAL ENGINEERS						
TOTAL EMPLOYED.	*	*	*	*	*	100
RESEARCH E DEVELOPTEETT.	*		*	*	*	100
MANAGEMENT OF RED.....	*	*	*	*	*	
GTNERRIL MANAGEMENT. . . .	*	*	*	*	*	*
TEACHING.	+	*	*	*	*	*
CONSULTING.	*	*	*	*		
CIVIL ENGINEERS						
RESEARCH © DEVELOPMENT.	*	*	*	*	*	*
MANAGEMENT OF RED. . . .	*	*	*	*	*	*
GENERRAL MANAGEMENT. . . .	*	*	*	*	*	*
TEACHING.	*	*	*	*	*	*
CONSULTING...............	*	*	*	*	*	*

[^31]TARLE B-15. EMPLOYED BLACK DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY UNM CONTINUED ACTIVITY: 1975-85

FIELD AND PRIHARY WORK ACTIVITY	1975	1977	1979	1981	1983	1985
ELEC. ELECTRON. ENGINEERS						
	*	*	*	*	100	100
MANACEMENT OF RED.....	*		*	*	\star	*
GENERAI MANAGEMENT.....	*	+	*	*	*	*
TEACHING,	*	*	*	*	100	*
MECHANICAL ENGINEERS						
TOTAL EAPLOYED	*	*	*	*	100	100
MANAGEMENT OF RED.....	*	*	-	*	*	*
gEnERAL MANAGEMENT.	*	*	*	*	100	*
TEACHING.	*	*	*	*	*	100
CONSULTING.	*	*	*	*	*	*
OTHER ENGINEERS						
TOTAL EYPLOYED.	*	100	100	100	200	200
RESEARCH ${ }^{\text {M }}$ (DEEVELOPYENT.	*	*	*	100	100	100
GLNERAL HANA : MENT	*	*	*	*	*	*
	*	*	*	*	*	*
CONSUT,TING. .	*	*	*	*	*	*

* 700 FEW CASES 70 Estimate

NOTE: COHPCHENAS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "HO REPORT." SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

TABLE B-16. ENPLOYED ASIAN DOCTOKAL SC TTTSS AND ENGINEERS BY FIELD AKD PRIMARY HORR

FIELD AND PRTHARY KORK Activity		1977	1979	1981	1983	1985
ALL FIELDS						
TOTAL MTPLOYED	15.600	16,300	22,900	27,400	2¢1,900	34, $=00$
RESEARCH	6,900	8,800 1,200	4,600	14,100	15,400	17, 300
	400	, 800	5,900	2,700	- 800	1,000
	3, 300	3,800	5,400	6,300	7,000	1, 1 ,000
Scientists						
TOTAL ETPLOYED	9,300	11,200	15,000	18,300	19,300	22,700
MNALGEMENT OP RED.....	+ 500	5,700	2,500	8,800 1.400	1, 1000	11,000 1,700
GENERAL MANAGEMENT.....	3 300	500	, 800	5 500	, 500	2,800
	3,100	3, 2000	4,400	5,400	5,700	5,900
PHYSICAL SCIENTISTS						
TOTAL MPSPLOYED	3,000	3,400	4,700 2,000	5,800	5,706	6,600
MNAMGEGMI	1,200	2,100	2,000	3,800	3,400	3,800
GENERAL MANAGEMENT....	100	100	, 100	100	100	200
TEACHING consulting.	700	700	1,000	800	1,000 100	1, ${ }^{1000}$
RESEARCH E DEVEIOPM,	200	800	1,100	1,200	1,400	1,400
	*	*	100		,	
TEACHING,	50	50	600	800	800°	900
COPPUTER SPECIALISTS						
	200	600 400	600 200	900	900	1,600
MANAGEHENI OF RED......: Genepat Manacticit.	*	*	$20{ }^{*}$	*	500 100	700 300
TEACHNG	10	10	100	$20{ }_{*}^{*}$	$30{ }^{*}$	200
ENVIROATENTAL SCIENTISTS						
TOTAL ERPLOYED	300	600 300	500	700	800	1,100
	200	300	300 100	300 200	300 100	600 100
GENERA MANGEEMENT.....	$10{ }^{*}$					
Cotsultimico............:	100	100	$\stackrel{\star}{*}$	100 100	100	100
LIFE SCIENTISTS						
	3,400	4,000	2,400	6,300	6,800	7,400
MANAGEMENT OF REDD	200	300	700	, 400	4,300	, 300
GENERAL MANAGEMENT.....	7	200 600	1,200	, 100	+ 100	200
Cowsulting.............:	100	6	1.100	1,300	1, 100	, 100
PSYCHOLOGISTS						
RESEARH		300	400 100	$\begin{array}{r}600 \\ 100 \\ \hline\end{array}$	700 100	800 100
GENERAL MANAGEMENİ:	*	*	100	${ }_{\text {* }}$		
TEACHING. \qquad	100	100	100	200	200	20
SOCIAL SCIENTISTS						
	1,400	1,500	2,300	3,000	3,100	3,800
RENAMCE	200	300 100	200 100	300 100	500	800
GEAERAL MANAGEMENT.....	100	100	200	200	100	200
COACHING	900	900	1,500 100	1,900	1,900	2,400
ENGINEERS						
TOTAL REMPLOYED	4,300	3,000	7,900	9,000	10,500	11, 500
MANAEEMENI OPREAL....:	2,300	3, 500	2,100	1,200	1,200	1,800
GEMERING...............	200 700	300 800	, 100	200	+ 300	, 200
CONSULTING.	200	200	1,600	8800	1,500	1,700
AERO/ASTRO ENGINEERS						
	200	100	200	300	300	500
			200	200	400	500
GEARAINGMNALE............	*	*	*	*	*	*
Consulting.	*	*	*	*	*	*
CHEMTCAL ENGINEERS						
TOTAL MESPLCH Y	500 300	700	1,200	1,600	1,500	
	300	500 100	700 4	$\begin{array}{r}1,200 \\ 200 \\ \hline\end{array}$	2000	1,200
CEACHING	100	200*	100	200	300^{*}	200
CIVIL ENGINEERS						
TOTAL RGPLOYED.	600 200	700 300			1,100	1,200
MASMEEMENT OF RGD..... CHOT MANCEID	200	300 100	400 100 \#	500	200*	400 100 $\#$
	100	200	100	100	200	200
Consurinc...............	100	100	500	400	400	300

TABLE B-1G. EMPLOYED ASIAN DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY WORK CONTINUED ACTIVITY: 1975-85

* TOO FEW CASES TO Estimate

NOTE: COMPONENTS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT." SOURCE: RATIONAL SCIENCE FOUNDATION, SR

FIELD AND PRIMARY HORK ACTIVITY	1975	1977	1979	1981	1983	1985
ALL FIELDS						
	2,000	2,700	4,100	4,800	5,400	5,900
RESEARCE	600	900	1,700	1,900	1,900	2,000
MANAGEMENI OFAGEMENT:	200	200	400 300	400	300	400
TEACEING	700	900	1,200	1, 200	1,500	1,200
CONSULTING.	100	100	100	- 400	, 200	1,400
SCIENTISTS						
TOTAL EMPLOYED	1,700	2,300	3,400	4,100	4,500	5,100
RESEARCE \& DEVELOPMENT.	500	700	1,500	1,600	1,600	1,800
MANAGEMENT OF RED	100	100	300	300	200	, 300
GENERAL MANAGEMENT.....	100	200	200	300	400	500
	600 100	800 100	900 100	1,000	1,200	1,100
PEYSICAL SCIENTISTS 400						
RESEARCH \& DEVELOPMENT.	200	200	500	300	300	400
	*	100	100	100	100	200
TEACEING.-.............	100	200				
CONSUTIING:	*	${ }_{*}$	20	300	300	200
MATH SCIENTISTS						
TOTAL EMPLOYED..........	100	200	200	200	200	300
RESEARCH \& DEVELOPMENT.	*	$\stackrel{+}{*}$	100	100	*	100
GENERAL MANAGEMENT.....	*	*	*	*	*	*
TEACAING................	100	100	100	100	100	100
CONSULTING.	*	*	*	*	10	*
COMPUTER STECTALISTS						
TOTAL EMPLOYED.	*	*	100	100	200	200
RESEARCG \& DEVELOPMENT.	*	*	*	*	100	
MANAGEMENT OF R\&D. . .	*	*	*	*	*	
GENERAL MANAGEMENT.	*	*	*	*	100	*
TEACEING...........	*	*	*	*	100	100
CONSULTING.	*	*	*	*		100
ENYTRONMENTA', SCIENTISTS						
RESEARCH \& DEVELOPMENT.	*	\%	100	100	10,	100
MANAGEPHENI OF RED......	*	*		*	*	*
GENERAL MANAGEMENT. . . .	*	*	$\stackrel{ }{*}$	*	*	*
CONSULTiNG..............	*	*	*	*	*	*
LIFE SCIENTISTS						
TOTAL EMPLOYED..........	600	700	1,000	1,200	1,300	1,400
RESEARCH \& DEVELOPMENT.	300	300	500	1,700	700	700
MANAGEMENT OF RED......	*	*	100	100	100	100
GENERAL MANAGERENT. . . .	**	*	100	100	100	200
	200	200	200	200	100	200
PSYCHOLOGISTS						
TOTAL EMPLOYED.........	200	304	500	600	700	1,000
RESEARCH	*	*	100	100	100	100
MANAGEMENT OF RED	*	*				
GENERAL MANAGEMENT. . . .	*	**	$1{ }^{10}$	100	100	100
	*	100		100 100	100	100
SGCIAL SCIENTAETS						
TOTAL EMPLOYED.	300	buj	600	800	1,000	1,100
RESEARCE \& DEVELOPMENT.	*	100	200	300	1300	1,400
MANAGEMENT OF R\&D \ldots. ${ }^{\text {G }}$.	*		100			
TEACHING.................	100	200		100	100	100
CONSULTINGG.............	*	+	*	100	400	300 100
ENGINEERS						
TOTAL EMPLOYED.... ${ }^{\text {P }}$	300	400	600	800	1,000	
RESEARCH E DEVELOPMENT.	100	100	200	300	1,300	200
MANAGENENT OF RED.....	100	100	100	100	100	*
GENERAI, MANAGEELENT. . . .	${ }^{*}$	100	100	100	${ }^{*}$	100
TEACBING	100	100	200	100	400	200
AERO/ASTR \quad ETGINEERS TOTAL EMHLOYED						
RESEARCH ¢ DEVELOPMENT.	*	+	*	*	*	*
MANAGEMENT OZ RED. . . .	*	*	*	*	*	*
general management. . . .	*	*	*	*	*	*
TEACAING................	*	*	*	*	*	*
CONSULTING...............	*	*	*	*	*	*
CHEMICAL ENGINEERS						
TOTAL EMPLOYED.........	*	100	100	*	100	100
RESEARCR \% DEVELOPMENT.	*	*	*	*		*
MANAGEY I O R RED.....	*	*	*	*	*	*
GENERAL	*	*	*	*	*	*
CONSULTING...	*	*	100	*	100	100
GIVIL ENGINEERS						
TOTAL EMPLOYED. ${ }^{\text {a }}$. ${ }^{\text {a }}$.	100	*	*	100	100	100
RESEARCH \& DEVELOPMENT.	*	*	*	*		
MANAGEMENT OF RED	*	*	*	*	*	*
GENERAL MANAGEMENT. . . .	*	*	*	*	*	*
TEACAING................	*	*	*	*	*	*
CONSULTING.	*	*	*	100	*	*

[^32]TABLE B-17. EMPLOYED HISPANIC DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY WORK
CONTINUED

ÁCTIDITIND PRIMARY HORR	1975	1977	1979	1981	1983	1985
ELEC /ELECIRON. ENGINEERS						
TOTAL EMMLOYED	100	100	100	100	200	200
RESEARCE DEVELOPMENT.	*	*	100	*	*	*
GENERAL MAHAGEMENT.....	*	*	*	*	*	*
TEACHING.	*	*	*	*	100	100
CONSULTING.	*	*	*	+	*	*
MECHANICRL ENGINEERS						
TOTAL EMPLOYED. ${ }^{\text {a }}$	*	\star	100	*	100	100
RESEARCE \& DEVELCPMENT.	*	*	*	*	100	*
MANAGEMENT OF DED	*	*	*	*		*
GENERAL MANAGEMENT.....	*	*	*	*	*	*
TEACAING................	*	*	*	*	*	*
CONSULTING.	*	*	*	*	*	*
OTHER ENGINEERS						
TOTAL EMPLOYED	100	200	400	500	500	400
RESEARCE	*	100	100	200	200	100
GENAGAL MANAGEMENT:.....	*	*	20	100	*	100
TEACHING.	*	*	200	100	100	*
CONSULTING.	*	*	*	100	+	100

* TOO FEW CASES TO ESTIMATE

NOTE: COMPONENTS MAY NOT ADD TO TOCAL BECAUSE TEAT SUM INCLUDES "OTHER" AND "NO REPORT." HISPANICS INCLUDE MEMBEIRS OF ALL RACIAL GROUPS.
SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

TABLE B-18. DOCTORAL SGIENTISTS AND ENGINEERS IN INDUSTRY BY FIELD AND SEX: 1985

FIELD	TOTAL EMPLOYED	MEN	HOMEI
TOTAL.	125,800	112,800	12,900
SCIENTISTS.	87,900	75,800	12,100
PtiYSICAL SCIENTISTS......	30,300	28,600	1,.00
CBEMISTS.	24,100	22,600	1,500
PGYSICISTS/ASTRONOMERS..	6,200	6,000	200
MATHEMATICAL SCIENTISTS..	1,900	1,700	200
MATHEMATICIANS.	1,400	1,300	100
STATISTICIANS.	500	400	100
COMPUTER/INFORMATION SPEC	8,400	7,400	2,000
ENVIRONMENEAL SCIENTISTS.	5,300	4,900	300
EARTH SCIENTISTS...	4,800	4,500	300
OCEANOGRAPHERS.	200	100	*
ATMOSPHERIC SCIENTISTS..	300	300	*
LIFE SCIENTISTS..	19,200	16,600	2,600
BIOLOGICAL SCIENTISTS...	9,300	7,900	1,400
AGRICULTURAL SCIENTISTS.	4,000	3,700	300
MEDICAİ SLIENTISTS......	5,800	5,000	800
PSYCHOLOGISTS.	15,500	10,400	5,100
SOCIAL SCIENTISTS.	7,400	6,200	1,200
ECOHOMISTS.	3,000	2,700	300
SOCIOLOGISTS/AYTRERO. . . .	1,100	800	300
OTHER SOCIAL SCIENTISTS.	3,300	2,700	600
E\#GINEERS.	37,900	37,000	800
AERO/ASTRO ENGTNEERS.	2,100	2,000	100
CHEMICAL ENGIMLERS.	5,100	5,000	100
CIVIL ENGINEERS..	2,400	2,400	*
ELEC. /ELECTRON. ENGINEERS	8,600	8, ${ }^{70}$	200
MatErials Sci. Engineers.	4,800	2,000	200
MECHANICAL ENGIAEERS.....	3,100	3,100	*
NUCLEAR ENGINEERS........	1,500	2,500	*
SYSTEMS DESIGN ENGINEERS.	2,507	2,4130	100
OTAER EMGINEERS...........	7,800	7,700	200

* TO FEH CASES TO ESTIMATE

NOTE: INDUSTRY INCLUDES SELF-EMPLOYED INDIVIDUALS.
SOURCE: RATIONAL SCIENCE FOUHDATION, SRS

TABLE B-19. DOCTORAL SCIENTISTS AND ENGINEERS IN INDUSTRY BY FIELD AND RACTAL/ETHNIC GROUP: 1985

FIELD						$\begin{array}{r} \text { HIS- } \\ \text { EANIC(1) } \end{array}$
	EMPLOYED	WHITE	BLACK	NATIVE AMERICAN	ASIAN	
TOTAL.....................	125,800	108,100	1,000	100	15,100	1,600
SCIENIISTS.................	87,900	78,900	700	100	7,200	1,100
PHYSICAL SCIENTISTS.	30,300	26,300	100	*	3,600	300
camerists.	24,100	20,900	100	*	2,800	300
PHYSICISTS/ASTRONOMERS..	6,200	5,400	*	*	800	*
MATHEMATICAL SCIENTISTS..	1,900	1,800	*	*	100	*
matmematicians...........	1,400	1,300	*	*	100	*
Statisticians.	500	500	*	*	*	*
COPPUTER/IAPORMATION SPEC	8,400	7,200	*	*	1,000	100
ENVIROMMENTAL SCIENTISTS.	5,300	4,700	*	*	40.3	*
EARIH SCIENTISTS........	4,800	4,300	*	*	400	*
OCEANOGRAPHERS.	200	200	*	*	*	*
ATMOSPGERIC SCIENTISTS..	300	300	*	*	100	*
LIFE SCIENTISTS..	19,200	17,100	100	*	1,600	200
BIOLOGICAL SCIENTISTS...	9,300	8,360	*	\star	900	100
AGRICULTURAI. SCIENTISTS.	4,000	3,600	*	*	400	100
MEDICAL SCIENTISTS......	5,800	5,300	100	*	300	100
PSYCBOLOGISTS.............	15,500	15,100	200	*	200	300
SOCIAL SCIENTISTS........	7,400	6,800	100	*	400	100
ECUNCMISTS.	3,000	2,700	*	*	200	100
SOCIOLOEISTS/ANTERO. . . .	1,100	1,000	*	*	*	*
OTHER SJCIAL SCIENTISTS.	3,300	3,000	100	*	100	*
Engineers	37,900	29,200	300	+	7,900	400
AERO/ASTRO ENGITEERS. . . .	2,100	1,800	*	*	300	*
CEEMICAL ENGINEERS.	5,100	3,600	100	*	1,400	*
CIVIL ENGINEERS....	2, 000	1,600	100	*	800	*
ELEC. /ELECTRON. ENGINEERS	8,0w0	6,700	*	*	1,700	100
MATERIALS SCI. ENGINEERS.	4,800	3,600	*	*	1,100	*
MECEANIGAL ENGIKEERS.....	3,100	2,300	*	*	800	*
NuCLEAR EIGGINEERS........	1,500	1,100	*	*	300	*
SYSTFMS DESIGN ENGINEERS	2,500	2,200	*	*	300	100
OTHFR ENGINEERS...........	7,800	6,300	100	*	1,20.	100

(1)HISPANICS INCLUDE MEMBERS OF ALL RACIAL GROUPS.

* TOO FEH CASES TO ESTIMATE

NOTE: COMPONENTS MAY NOE ADD TO TOTAL BECAUSE THAT SIM CNCLUDES "OTHER" AND "NO REPORT." INDUSTRY INCLUDES SELF-EMPLOYED INDIVIDUALS.

SOURCE: RATIONAL SCIENCE FOUNDATION, SRS
table b-20. DOCTORAL SCIENTISTS AND ENGINEERS IN INDUSTRY BY FIELD AND PRIMARY WORK ACTIVITY: 1985

NOTE: COMPONENTS MAY MOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT." INDUSTRY INCLUDES SELF-EMPLOYED
INDIVIDUALS.

SOURCE: NATIONAL SCIENCE FOUNDATION, SR

TABLE B-21. DOCTORAL SCIENTISTS AND ENGINEERS IN INDUSIA. BY FIELD AND AGE: 1985

* too FEW CASES TO ESTIMATE

NOTE: COMPONENTS MAY NUT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT." INDUSTRY INCLUDES SELF-EMPLOYED INDIVIDUALS.

SOURCE: NATIONAL SCIENCE FOUNDATION, PRS

TABLE B-22. DOCTORAL SCIENTISTS AND ENGINEERS IN 4-YEAR COLLEGES/ UNIVERSITIES BY FIELD AND SEX: 1985

FIELD	TOTAL EMPLOYED	MEN	WOMEN
TOTAL.	202,000	170,300	31,700
SCIENTISTS..................	180,500	149,300	31,200
PHYSICAL SCIENTISTS.	28,20 ${ }^{\text {a }}$	26,100	2,100
CHEMISTS.	15,00!	13,400	1,600
PHYSICISTS/ASTRONOMERS..	13,200	12,700	500
MATHENALICAL SCIENIISTS..	13,000	11,900	1,100
MATHEMATICIANS.	11,100	10,200	1,000
STATISTICISN:.	1,900	1,700	200
COXPUTEI/INFORMATION SPEC	5,100	4,700	500
ENVIRONMENTAL SCIENTISTS.	7,100	6,600	500
EARTH SCIENTISTS........	5,000	4,700	300
OCEANOGRAPHERS.	1,200	1,000	100
ATMOSPHERIC SCIENTISTS	1,600	900	2:0
LIFE SCIENTISTS.	61,800	48,900	12,900
BIOLOGICAL SCIENTISTS...	39,200	30,500	8,700
AGRICULTURAL SCIENTISTS.	8,500	8,000	400
MEDICAL SCIENTISTS......	14,100	10,400	3,700
PSYCHOLOGISTS....	21,500	15,300	6,200
SOCIAL SCIENTISTS........	43,800	35,800	8,000
ECONOMISTS.	11,600	10,700	1,000
SOCIOLOGISTS/ANTHRO.	10,000	7,100	2,900
OTHER SOCIAL SCIENTISTS.	22,100	18,000	4,100
ENGINEERS.	21,500	21,100	400
AERO/ASTRO ENGINEERS.	700	700	*
CHEMICAL ENGINEERS.	1,700	1,700	*
CIVIL ENGINEERS..	3,400	3,400	*
ELEC./ELECTRON. ENGINEERS	4,600	4,500	100
Materials sci. ENGINEERS.	1,800	1,800	*
MECERANICAL ENGINEERS ..	2,900	2,900	*
NuCLEAR EngInEers........	500	500	+
SYSTEMS DESIGN ENGINEEELS.	800	700	*
OTHER ENGINEERS....	5,000	4,900	100

* TOO FEN CASES TO ESTMMATE

SOURCE: NAIIOIALL SCIENCE FOUNDATION, SRS

TABLE B-23. DOCTORAL SCIENTISTS AND ENGINEERS IN 4-YEAR COLLEGES/UNIVERSITIES BY FIELD AND RACIAL/ETHNIC GROUP: 1985

FiELD	TOTAL		Native			$\begin{array}{r} \text { HIS- } \\ \text { PANIC(1) } \end{array}$
	EMPLOYED	WHITE	BLACK	AMERICAN	ASIAN	
total..........	202,000	181,100	3,500	300	14,800	2,900
SCIENTISTS.	180,50'J	163,100	3,400	200	11,900	2,600
PHYSICAL SCIESTISTS..	28,200	25,100	300	100	2,300	400
Chemists	15,000	13,400	200	*	1,100	300
PHYSICISTS/ASTRONOMERS. .	13,200	11,700	100	*	1,200	100
Mathematical scientists..	13,000	11,600	100	*	1,100	200
MATHEMATICIANS.	11,100	10,000	100	*	800	200
STATISTICIANS.	1,900	1,600	*	*	300	*
COMPUTER/INFORMATION SPEC	5,100	4,400	*	*	600	100
ENVIRONMENTAL SCIENTISTS.	7,100	6,600	*	*	400	100
EARTH SCIENTISTS.	5,000	4,600	*	*	300	100
OCEANOGRAPHERS.	1,200	1,100	*	*	100	*
ATYOSPHERTC SCIENTISTS..	1,000	800	*	*	100	*
LIFE SCIENTISTS.	61,800	55,900	900	*	4,500	800
BIOLOGICAL SCIENTISTS...	39,200	35,301	600	\star	3,000	500
AGRICULTURAT SCIENTISTS.	8,500	8,000	100	*	300	100
MEDICAL SCIENTISTS......	14,100	12,500	300	*	1.200	200
PSYCHOLOGISTS.	21,500	20,200	600	*	300	400
SOCIAL SCIENTISTS.	43,800	39,300	1,300	*	2,700	603
ECONOMISTS.	11,600	10,300	200	*	1,000	200
SOCIOLOGISTS/ANTHRO.	10,000	9,200	300	*	400	200
OTEER SOCIAL SCIENTISTS.	22,100	19,800	800	*	1,300	300
ENGINELMS.	21,500	18,000	200	100	3,000	300
AERn/ASTRO ENGINEERS.	700	600	*	*	100	*
CHEMICAL ENGINEERS.	1,700	1,300	*	*	400	100
CIVIL ENGINEERS.	3,400	3, 200	*	*	300	*
ELT ',/ELECTRON. ENGINEERS	4,600	3,800	*	*	600	100
Materialis sci. Engineers.	1,800	1,500	*	*	300	*
MECEANICAL ENGINEERS.....	2,900	2,300	100	*	500	*
NUCLEAR ENGINEEKS.	500	500	*	*	*	*
SYSTEMS DESIGN ENGINEERS.	800	700	*	*	100	*
OTHER ENGIL..̇ERS..	5,000	4,300	*	*	700	*

(1) HISPANICS INCLUDE MEMBERS OF ALL RACIAL GKOUPS.

* TOO FEN CASES TO ESTIMATE

NOTE: COMPONENTS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" Ai "NO REPORT." SOIRCE: MATIONAL SCIENCE FOUNDATION, SRS

FIELD	$\begin{array}{r} \text { TOTAL } \\ \text { ERPLOYED } \end{array}$...RESTOTAL	$\begin{gathered} \text { EARCH AND } \\ \text { BASIC } \\ \text { RE- } \\ \text { SEARCH } \end{gathered}$	```DEVELOPMENT. . . APPL'D RE- DEVEJ,- SEARCH ORMENT```		. MANAGEMENI OR ADMIN. .					SALES	PROF. SERVICES	$\begin{aligned} & \text { PROD. } \\ & \text { \& RE- } \\ & \text { LATED } \\ & \text { ACT. } \end{aligned}$
						rotal	$\begin{gathered} \text { OF } \\ \text { R\&D } \end{gathered}$	GEN- ERAL	TEACB- ING				
rotal.	202,000	60,600	43,600	15,700	1,300	39,700	3,900	18,700	103,700	1,200	100	4,700	600
SCIENTISTS.	180,500	55,400	41.200	13,300	900	19,100	2,900	16,300	91,800	1,100	100	4,600	400
PHYSICAL SCIENTISTS......	28,200	10,700	8,700	1,700	200	?,700	900	1,900	13,500	*	*	100	100
CHEMISTS.	15,000	5,100	4,600	400	*	1,100	200	900	8,100	*	*	100	100
PHYSICISTS/ASTRONOMERS. .	13,200	5,600	4,100	1,300	200	1,600	700	1,000	5,500	*	*	*	*
Mathematical scientists..	13,000	2,400	2,100	300	*	1,200	100	1,100	8,900	100	*	*	*
Mattematicians.	11,100	2,100	1,900	200	*	1,000	*	1,000	7,600	100	*	*	*
Statisticians.	1,900	30	200	100	*	100	*	100	1,300	100	*	*	*
COMPUTER/INFORMATION SPEC	5,100	1,400	700	300	300	500	100	500	2,600	100	*	100	100
ENVIRONMENTAL SCIENTISTS.	7,100	2,700	1,900	700	*	900	400	600	3,200	*	*	*	*
EARTE SCIENTISTS.	5,000	1,300	1,000	300	*	600	$\bigcirc 50$	400	2,800	*	*	*	*
OCEANOGRAPHERS. .	1,200	800	700	*	*	200	100	100	200	*	*	*	*
ATMOSPHEPIC SCIENTISTS..	1,000	600	300	300	*	100	100	100	200	*	*	\star	*
LIEE SCIENTISTS.	61,800	29,100	22,700	6,100	300	6,200	1,000	5,200	20,700	300	*	2,100	200
BIOLOGICAL SCIENTISTS.	39,200	20,000	18,100	1,800	100	2,900	400	2,500	14,000	200	*	400	200
AGRICULTURAL SCIENTISTS.	8,500	4,300	1,200	3,100	*	1,100	300	900	2,200	100	*	200	*
MEDICAL SCIENTISTS.	14,100	4,900	3,500	1,200	200	2,200	300	1,900	4,500	100	*	1,500	100
PSYCHOLOGISTS.	21,500	3,600	2,100	1,400	*	2,400	100	2,300	12,000	300	*	2,100	100
SOCTAL SCIENTISTS.	43,800	5,500	2,900	2,600	*	5,100	300	4,800	30,800	200	*	200	*
ECONOMISTS.	11,50n	2,300	800	1,500	*	1,200	*	1,200	7,600	100	*	200	*
SOCIOLOGISTS/ANTHRO.	10,000	1,300	1,000	300		800	100	700	7,300	*	*	170	*
OTHER SOGIAL SCIENIISTS.	22,100	1,900	1,100	$\varepsilon 00$	*	3,100	200	2,900	15,900	100	*	100	*
ENGINEERS.	21,500	5,200	2,400	2,400	400	3,500	1,100	2,500	11,900	100	*	100	100
AERO/ASTRO ENGINEERS.	700	300	100	100	*	100	100	,	300	*	*	100	100
CHEMICAL ENGINEERS.	1,700	600	300	200	*	200	*	200	900	*	*	*	*
GIVIL ENGINEERS.	3,400	600	300	300	*	600	100	500	2,200	*	*	*	*
ELEC./ELECTRON. ENGINEERS	4,600	800	400	300	100	800	200	600	2,900	*	*	*	100
MATERIALS SCI. ENGINEERS.	1,800	500	200	200	100	400	100	200	800	*	*	*	100
MECHANICAL ENGINEERS.	2,900	600	300	' 00	*	400	100	300	1,800	*	*	*	*
NUCLEAR ENGINEERS.	500	300	*	200	*	200	100	*	100	*	*	*	*
SYSTEMS DESIGN ENGINEERS.	800	200	100	*	*	200	100	100	400	*	*	*	*
OTHER ENGINEERS.	5,000	1,500	600	800	100	900	300	600	2,400	100	*	100	100

* TOO FEW CASES TO EStimate

note: components may not add to total because that sum includes "other" and "no report."
SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

TABLE B-25. DOCTORAL SCIENTISTS AND ENGINEERS IN 4-YEAR COLLEGES/ UNIVERSITIES BY FIELD AND AGE: 1985

* TOO FEW CASES TO ESTIMATE

NOTE: COMPON"'TS MAY NOT ADD TO TOTAL BECAUSE THAT SUM INCLUDES "OTHER" AND "NO REPORT."

SOURCE: NATIONAL SCIENCE FOUNDATION, SR

TABLE B-26. pERCENT distribution or doctoral scientists and ingineers by field of employment and field of doctorate: 1975

FIELD OR DOCTORATE	1975 FIELD OP EPPLOYMENT												
		TOTAL				. Math.	SCIENTISTS....		COMP/	ENVIROMMENTAL		scientists	
	TOTAL	$\begin{gathered} \text { SCIEN- } \\ \text { TISTS } \end{gathered}$	IOTAL	$\begin{aligned} & \text { CEES }- \\ & \text { ISTS } \end{aligned}$	$\begin{aligned} & \text { CISTS/ } \\ & \text { ASTRON. } \end{aligned}$	TOTAL	MATH.	Stat.	INFRM. spec.	total	$\begin{aligned} & \text { EARTH } \\ & \text { SCI. } \end{aligned}$	OCEAN.	ATMOS. SCI.
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100,0	100.0	100.0	100.5	100.0
SCIENTISTS, TOTAL	82.9	. 5.8	96.5	98.3	93.1	93.3	93.4	92.8	74.3	93.2	92.9	96.6	92.5
PEYSICAL SCI.	25.0	27.2	92.5	93.1	91.4	3.9	4.1	2.5	17.6	16.9	13.2	10.6	49.6
CEI ISTS	16.0	18.0	62.0	92.4	4.1	. 7	. 7	1.1	3,8	7.7	7.6	2.3	13.0
PEYSICISTS/ASTRON.	8.9	9.2	30.5	. 8	37.3	3.1	3.4	1.4	:3.9	9.3	5.6	2.3	36.7
mathematical sci.	5.5	6.3	. 1	*	. 4	86.9	87.9	80.0	30.8	. 4	. 3	.f	. 9
mathematicians	5.0	5.7	. 1	*	. 4	79.1	86.4	29.3	29.3	. 3	. 2		. 9
Stati Sticians	. 5	. 6	*	*	.	7.8	1.4	50.8	29.3 1.4	.	. 2	${ }_{*}$	*
COMPUTER SPECIALISTS	. 3	. 4	*	*	*	. 3	. 3	. 3	21.9	*	*	*	*
Environyental sci.	3.2	3.7	. 3	. 2	. 5	*	*	*	. 5	62.8			
Earth Scientists	2.6	3.0	. 2	. 2	. 3	*	*	*	. 2	62.8 50.8	65.8 62.3	62.2	41.2 3.3
OCEANOGRAPHERS	. 3	4	*	*	*	*	*	*	. 2	50.8	62.3	14.2	3.3
ATMOSPHEPIC SCI.	. 3	. 3	. 1	*	. 3	*	*	*	. 3	6.4 5.5	1.9 1.6	46.0 2.0	37.4
LIfE SCIENTISTS	23.7	28.3	3.5	4.9	. 7	. 3	. 2	1.3	. 8	10.5			
BIOLOGICAL SCI.	16.9	20.1	2.8	3.9	5	. 2	. 1	1.3 .5	. 5	10.5	10.3		*
AGRICULTURAL SCI.	4.2	5.0	. 4	. 6	*	. 1	*	. 8	. 3	8.5 1.5	7.7 2.0	23.1	*
MEDICAL SCI.	2.7	3.2	. 3	.4	. 1	. 1	*	$\stackrel{ }{*}$. 3	1.5 .5	2.0 .6	*	*
PSYCBOLOGISTS	10.9	13.0	*	*	*	. 4	. 3	1.4	. 8	\pm	*	*	*
SOCIAL SCIENTISTS	14.2	17.0	*	. 1	*	1.5	. 7	7.3	2.0	2.7			
ECONOMISTS	4.8	5.7	*	. 1	*	8				2.7	3.3	*	. 8
SOCIOLOGST/ ANTHRO.	3.4	4.1	*	. 1	*	. 8	. 5	3.1	$\stackrel{.}{*}$. 3	. 4	*	*
OTHER SOCIAL SCI.	6.0	7.2	*	*	*	. 7	. 2	4.2	1.0	2.2	$\stackrel{.1}{2.8}$	*	. 8
ENGINEERS, TOTAL	15.4	2.1	3.1	1.4	6.6	3.6	3.5	4.0	24.9	6.4	6.7		
AERO/ASTRO ENGINEER	. 7	. 1	. 3	*	. 9	. 3	. 3	4. 5	24.9 1.4	6.4 .3	6.7 .2	2.7	7.5 .8
CHPMICAL ENGINEERS	2.5	. 3	. 6	. 8	. 2	. 2	. 2	.6	2.7	. 5	. 7	*	. 8
CIVIL ENGINEERS	1.5	. 2	. 1	+	. 1	.	1	.	2.7	. 8	. 0		*
ELEC. / ELECTRON. ENG.	3.7	. 7	1.0	*	2.8	. 9	.8	1.1	14.8	1.8	2.0	. 5	1.2
Materials sci. eng.	1.7	. 2	. 5	4	. 6	.	.	1.1	14.3	1.4	1.3	. 8	2.9
mechanical eng.	1.7	. 1	. 3	*	.7	2	2	*	. 6	. 6	7	*	*
nuclear eng.	. 3		.	*	. 1	. 2	. ${ }^{*}$	*	. 6	. 5	. 4	*	2.0
SYSTEMS DESIGN ELGG.	. 3	. 1	*	*	*			*	6	*	*	*	*
OTHER ENGINEERS	2.8	. 4	. 5	. 1	1.2	1.2	1.3	.9	4.6	13	1.4	1.4	*
NON S/E, TOTAL	1.8	2.0	. 3	. 3	3	3.1	3.1						

[^33]TABLE S-26. PERCENI DISTRIBUTION OF DOCTORAL SCIENTISTS AND ENGIMEERS BY FIELD OF EMPLOMMENT COATINUED AND FIELD OF DOCTORATE: 1975

1975 FIELD OF EMPLOMAENT

FIELD OF DOCTORATElife scientists........				 SOCIAL SCIENTISTS.......			
	TOTAL	$\begin{gathered} \text { BIOL. } \\ \text { SCI. } \end{gathered}$	AGRIC. SCI.	MEDICAL SCI.		TOTAL	$\begin{aligned} & \text { ECON- } \\ & \text { OTISIS } \end{aligned}$	sociol ANTBRO.	OTHER
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
SCIENTISTS, TOTAL	98.8	99.0	99.2	97.9	90.4	98.1	98.8	98.2	97.5
PEYSICAL SCI.	6.3	6.1	3.0	9.7	. 2	. 6	. 5	*	. 8
Chamsts	5.3	5.1	2.7	8.2	. 1	. 2	. 2	*	. 2
PEYSICISTS/ASTRON.	1.0	1.0	. 3	1.5	. 1	. 4	. 4	*	. 7
matiematical sci.	. 5	. 7	*	. 2	*	. 3	. 2	*	. 4
maimmaticians	. 2	. 3	*	. 1	*	. 2	. 2	*	. 4
STATISTICLANS	. 3	. 5	*	. 1	*	*	*	*	. 1
COMPUTER SPECIALISTS	*	*	*	*	*	*	*	*	. 1
Envirommental scr.	. 2	. 3	. 3	. 1	*	. 1	*	*	. 2
EARTH SCIENTISTS	. 1	. 1	. 3	. 1	*	*	*	*	. 1
OCEANOGRAPHERS	. 1	. 1	*	*	*	*	*	*	*
ATHOSPHERIC SCI.	*	*	*	*	*	*	*	*	. 1
LIFE SCIENTISTS	89.7	91.0	94.7	81.5	. 4	. 6	. 5	.4	. 3
BIOLOGICAL SCY.	63.4	86.2	15.5	36.3	. 3	. 2	*	. 2	. 4
AGRICULTURAL SCI.	16.0	3.4	79.1	1.0	*	. 3	. 5	. 2	. 3
MEDICAL SCI.	10.2	1.5	. 1	44.1	. 1	. 1	*	*	. 2
PSYCHOLOGISTS	1.2	. 6	*	3.9	88.5	1.1	. 1	. 6	2.0
Social scientists	1.0	. 3	1.3	2.5	1.2	95.4	97.5	97.2	93.2
ECONOMSTS	. 3	*	1.2	. 3	. 1	32.2	95.8	. 3	2.2
SOCIOLOGST/ ANTHRO.	. 4	. 2	*	1.4	. 7	22.9	*	94.7	5.1
OTHER SOCIAL SCI.	. 2	. 1	. 1	. 8	. 5	40.3	1.6	2.3	85.9
ENGINEERS, TOTAL	. 8	. 6	. 6	1.5	1	. 4	. 5	*	. 5
Chemical emgineers	. 1	*	. 2	. 2	*	. 1	. 3	*	*
CIVIL ENGINEERS	*	*	*	*	*	1	. 1	*	. 2
ELEC./ELECTRON. Eng.	. 1	*	. 1	. 2	*	. 1	*	*	. 3
materials sci. eng.	*	*	*	. 1	*	*	*	*	*
mechanical eng.	. 1	. 1	. 1	. 1	*	*	*	*	*
nuclear zng.	*	*	*	. 1	*	*	. 1	*	*
SYSTEMS DESIGN ENG.	*	*	*	*	*	*	*	*	*
OTEER FNGINEERS	. 4	. 4	. 2	. 7	. 1	*	. 1	*	*
NON S/E, TOTAL	. 4	. 4	. 2	. 6	9.5	1.6	. 7	1.8	2.1

[^34]table b-26. percent distribution of doctoicu scientists and engineers by field of tiploment and COHIINUED FIELD OP DOCTORATE: 1975

1975 FIELD OF EMPLOYMENT

FIELD OF DOCTORATE	AERO/			EEEC. 1		mat'ls			SYSTEMS	OTER
	TOTAL	ASTRO	chear	civil	ELECIRN	SCI	MECH	JuClear	idesign	ENGIM
total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100)	10 n .0
SCIENTISTS, TOTAL	17.6	14.0	10.7	8.1	15.3	19.7	3.0	35.2	35.8	25.4
PHYSICAL SCI.	13.9	9.8	10.4	4.6	12.8	18.4	2.2	33.5	16.9	19.9
Cherists	6.0	2.0	9.7	4.3	2.7	12.3	. 2	7.3	4.6	7.9
PEYSICISTS/ASTRON.	7.9	7.8	. 7	. 3	1 n .1	6.1	2.0	26.1	12.2	12.1
mathematical sci.	1.5	3.2	. 1	. 5	1.0	. 1	. 4	1.3	12.0	1.3
Mathematicians	1.4	3.1	. 1	. 5	1.0	. 1	. 4	1.3	12.2	1.3
Statisticians	. 1	. 1	*	*	*	*	*	,	. 9	.
COMPUTER SPECIALISTS	. 1	*	*	*	. 4	*	. 1	*	*	. 2
Environmental sci.	. 5	*	*	1.2	. 2	. 5	*	*		1.2
EARTH SCIENTISTS	. 5	*	*	1.2	. 2	. 5	*	*		1.2
ATMOSPHERIC SCI.	*	*	*	*	.	.	*	*	. 5	1.2
LIFE SCIENTISTS	. 9	. 7	. 2	. 9	. 4	. 7	. 1	. 5	. 9	2.1
BXOLOGICAL SCI.	. 6	. 5	. 2	. 5	. 4	.4	. 1	. 5	. 6	1.5
AGRICULTURAL SCI.	. 1	. 2	*	. 2	*	. 1	*	.	. 6	. 4
MEDICAL SCI.	.1	*	*	. 2	*	. 2	*	*	. 2	. 1
PSYCHOLOGISTS	. 2	*	*	*	. 3	*	*	*	1.6	. 1
SOCIAL SCIENTISTS	. 5	. 3	*	. 9	. 3	*	. 2	*	3.7	. 6
ECONOMISTS	. 2	. 3	*	. 3	. 1	*	. 2	*	2.5	. 1
SOCIOLOGST/ANTERO.	*	*	*	. 3	*	*	*	*	2.5	. 1
jther social sci.	. 3	*	*	. 3	. 2	*	. 2	*	1.2	. 5
ENGINEERS, TOTAL	82.1	85.7	89.2	91.8	84.5	80.3	96.9	64.5	62.9	74.0
AERO/ASTRO ENGINEER	3.7	48.1	*	. 3	. 4	*	6.1	1.4	1.5	7.0 2.6
CHEMICAL ENGINEERS	13.8	1.3	86.0	3.0	. 2	3.7	1.0	10.4	5.5	5.5
CYVIL ENGEINEERS	8.5	2.9	. 2	79.2	+	. 4	2.2	10.	2.0	4.0
ELEC. IELECTRON. ENG.	19.3	7.1	*	*	76.9	1.1	. 4	. 7	20.2	9.0
Materials sci. eng.	9.3	*	. 3	. 6	1.1	71.1	1.6	1.7	20.2	3.3
HECRANICAI. ENG.	9.5	9.2	. 5	. 7	. 5	. 6	71.0	6.1	2.0	7.2
nuclear I 6.	1.8	. 7	. 4	. 3	*	.1	. 6	36.5	2.0	. 8
SYSTEMS D SİG ENG.	1.4	1.5	*	. 7	. 8	.	.	36.5	18.2	. 1
OTHER ENGINEERS	14.8	14.8	1.8	7.0	4.5	3.3	13.8	7.8	12.8	41.4
NON S/E,TOTAL	. 3	. 3	. 1	. 1	. 2	*	. 1	. 2	1.3	. 6

* TOO FEN CASES to Estimate

SOURCE: NATIONAL SCIEMCE FOUBDATION, SRS

TABLE B-27. PERCENT DISTRIBUTION OF DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD OF EMPLOMENT AND FIELD OF DOCTORATE: 1985

FIELD OF DOCTORAIE	1985 FIELD OE EMPLOYMENT PHYSICAL SCIENTISTS ...MATH. SCIENTISTS.									ENVIRONMENTAL SCIENTISTS			
		total			PEYSI-				COMP/				
	TOTAL	$\begin{gathered} \text { SCIEN- } \\ \text { TISTS } \end{gathered}$	TOTAL	$\begin{gathered} \text { CHEM- } \\ \text { ISTS } \end{gathered}$	CISTS/ ASTRON.	TOTAL	Math.	Stat.	INFRM. SPEC.	TOTAL	$\begin{aligned} & \text { EARTH } \\ & \text { SCI. } \end{aligned}$	OCEAN.	atmos. scI.
total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
SCIENTISTS, TOTAL	83.0	95.4	97.5	99.1	94.5	93.9	93.3	96.6	72.4	92.6	92.0	95.0	93.8
PEYSICAL SCI.	20.4	21.8	91.9	92.2	91.3	3.2	3.5	1.4	17.1	12.3	11.0	3.8	28.1
CHEMISTS	12.7	14.3	60.7	91.8	3.4	. 6	. 7	*	6.6	6.1	6.0	. 3	11.7
PEYSICISIS/ASTRON.	7.6	7.5	31.1	. 3	87.8	2.6	2.8	1.4	10.5	6.2	5.0	3.5	16.3
mathematical sci.	4.9	5.5	. 2	*	. 4	86.5	87.5	81.9	18.1	. 5	.4	. 7	. 8
MATHEMATICIANS	4.4	4.9	. 2	*	. 4	77.8	86.3	36.2	17.1	. 5	. 4	. 6	. 8
STATISTICIANS	. 5	. 6	*	*	*	8.7	1.3	45.7	1.1	*	*	. 1	*
COMPUTER SPECIALISTS	. 8	. 8	*	*	*	. 2	. 3	*	18.2	*	*	*	*
ENVIROMMENTAL SCI.	3.3	3.8	. 6	. 4	1.1	. 2	. 3	*	. 9	65.8	6 6.5	69.3	58.7
EARTH SCIENTISTS	2.4	2.8	. 3	. 3	. 3	. 1	. 1	*	. 5	49.8	63.1	10.4	3.4
OCEANOGRAPHERS	. 5	. 5	. 1	*	. 1	. 1	. 1	*	. 1	8.5	2.6	56.8	. 9
ATMOSPHERIC SCI.	. 4	. 5	. 2	*	. 7	*	*	*	. 3	7.5	. 8	2.1	54.4
LIFE SCIENTISTS	24.3	28.7	4.8	6.4	1.8	1.5	. 7	5.4	5.0	10.6	10.7	18.9	3.0
BIOLOGICAL SCI.	16.4	19.5	3.8	5.1	1.4	1.4	. 6	5.0	3.7	8.1	7.9	16.3	1.5
AGRICULTURAL SCI.	3.9	4.6	. 5	. 7	. 1	. 1	. 1	. 5	. 8	2.3	2.4	2.3	1.5
MEDICAL SCI.	3.9	4.6	. 6	. 7	.4	*	*	*	.4	. 3	. 4	. 3	
PSYCHOLOGISTS	13.6	16.1	*	. 1	*	.4	. 1	2.2	6.7	. 1	*	. 7	*
SOCIAL SCIENTISTS	15.8	18.8	. 1	. 1	*	1.7	1.0	5.6	6.4	3.2	3.5	1.6	3.2
ECONOMISTS	4.6	5.5	*	*	*	. 9	. 8	1.8	1.0	. 1	. 1	*	*
-SOCIOLOGST/ANTHRO.	4.1	4.9	*	. 1	*	*	*	*	1.7	. 5	. 6	*	*
Other social sci.	7.1	8.4	*	*	*	. 8	. 2	3.9	3.8	2.7	2.8	1.6	3.2
ENGINEERS, TOTAL	15.0	2.2	2.3	. 8	5.1	2.8	3.3	. 1	19.0	6.9	7.6	3.7	5.2
AERO/ASTRO ENGINEER	. 8	. 2	. 3	*	. 8	. 3	. 3	*	1.5	. 3	. 3	*	*
Chemical engineers	2.3	. 2	. 2	. 3	*	. 1	. 2	*	1.3	*	*	*	*
CIVIL ENGINEERS	1.9	. 3	. 1	*	. 3	*	*	*	1.3	2.8	2.9	. 2	4.5
ELEC./Electron. Eng.	3.2	. 6	. 4	*	1.2	*	*	*	7.2	1.6	1.7	2.8	. 7
Materials sci. Eng.	1.4	. 1	. 4	. 3	. 5	*	*	*	. 4	. 1	. 1	*	
mechanical eng.	1.6	. 1	. 1	*	. 2	. 1	. 2	*	. 2	. 5	. 3	1.7	*
NuCLEAR ENG.	. 5	. 1	. 3	*	.9	*	*	*	. 2	. 1	. 1	*	*
SYSTEMS DESIGN ENG.	. 4	. 2	*	*	*	2.2	2.5	. 1	1.5	. 1	2	*	*
OTHER ENGINEERS	2.7	. 5	. 5	. 2	1.2	. 1	. 1	*	5.4	1.5	2.0	*	*
SON S/E,TOTAL	2.1	2.4	. 2	. 1	. 3	3.3	3.3	3.3	8.6	. 5	. 3	1.3	1.0

TABLE B-27. PERCENI DISTRIBUIION OR DOCTORAL SCIENTISTS AND ENGINSERS BY FIELD OF EMPLOYMENT CONTINUED AND FIELD OF DOCTORATE: 1985

1985 FIELD OF EMPLOMMENT

FIELD OF DOCTORATELIPE SCIENTISTS.				$\begin{array}{r} \text { PSY- } \\ \text { CHOL- } \\ \text { OGISTS } \end{array}$ SOCIAL SCIENTISTS.......			
	TOTAL	BIOL. SCI.	AGRIC. SCI.	$\begin{aligned} & \text { MEDICAL } \\ & \text { SCI. } \end{aligned}$		TOTAL		$\begin{gathered} \text { SOCIOI } \\ \text { ANTERO. } \end{gathered}$	OTEER
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
SCIENTISTS, TOTAL	98.4	99.1	98.4	96.6	95.7	94.9	99.0	98.5	91.3
PEYSICAL SCI.	5.3	5.0	2.2	7.6	. 1	. 4	. 4	*	. 6
CEEMISTS	4.5	4.4	2.1	6.2	*	. 3	. 4	*	. 3
PEYSICISTS/ASTRON.	. 7	. 6	. 1	1.3	. 1	. 2	*	*	. 3
MATEEMATICAL SCI.	. 7	1.0	*	. 4	*	. 4	. 4	*	. 5
MATEEMATICIANS	. 3	. 4	*	. 3	*	. 3	. 4	*	. 4
STATISTICIANS	. 4	. 6	*	. 2	*	. 1	*	*	. 1
COMPUTER SPECIALISTS	*	*	*	. 1	*	*	*	*	*
ENVIROMMENTAL SCI.	. 5	. 4	1.1	. 4	*	. 2	. 1	*	. 3
EARTH SCIENTISTS	. 3	. 3	. 3	. 3	*	. 2	. 1	*	. 3
OGEANOGRAPHERS	. 2	. 2	. 7	*	*		*	*	.
ATMOSPEERIC SCI.	*	*	*	. 1	*	*	*	*	*
LIFE SCIENTISTS	87.6	90.2	S3.3	78.2	. 5	. 8	. 7	. 2	1.1
BIOLOGICAL SCI.	59.0	82.4	16.0	31.3	. 2	. 2	. 1	*	. 4
AGRICULTURAL SCI.	14.2	3.8	76.9	1.0	*	. 3	. 5	. 1	. 2
MEDICAL SCI.	14.3	4.0	. 4	45.9	. 2	. 3	. 1	. 1	.4
PSYCEOLOGISTS	2.6	2.0	*	5.3	94.1	1.6	. 3	. 5	2.7
SOCIAL SCIENTISTS	1.8	. 5	1.9	4.7	1.0	91.6	97.1	97.8	86.2
ECONOMLSTS	. 3	. 1	1.5	. 2	. 1	27.8	95.3	. 2	2.1
SOCIOLOGST/ANTERO.	1.0	. 3	. 2	3.1	. 4	22.9	. 2	95.0	7.6
OTHER SOCIAL SCI.	. 4	. 1	. 1	1.4	. 5	40.9	1.6	2.6	76.5
ENGINEERS, TOTAL	1.0	. 7	. 7	1.8	*	. 2	3	*	2
AERO/ASTRO ENGINEER	*	*	*	. 1	*	*	*	*	2
CHEMICAL ENGINEERS	. 2	. 1	. 1	. 3	*	. 1	*	*	1
CIVIL ENGINEERS	. 1	. 1	*	. 1	*	. 1	. 1	*	1
ELEC. /ELECTRON. ENG.	. 2	. 3	*	. 2	*	*	. 1	*	*
MATERIALS SCI. ENG.	. 1	*	. 1	. 3	*	*	*	*	*
MECHANICAL ENG.	. 1	*	*	. 2	*	*	*	*	*
NUCLEAR ENG.	. 1	*	*	. 3	*	\star	*	*	*
SYSTEMS DESIGN ENG.	*	*	. 2	*	*	*	*	*	*
OTHER ENGINEERS	. 2	. 2	. 3	. 3	*	*	*	*	*
NON S/E,TOTAL	. 7	. 2	. 9	1.5	4.3	4.9	. 7	1.5	8.5

TABLE B-27. PERCENT DISTRIBUTION OF DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD OF EMPLOMMENT AND CONTIMUED FIELD OF DOCTORATE: 1985

1985 FIELD OF EMPLOYMENT

FIELD OF DOGTORATE	AERO/			ELEC. 1		mat'LS			SYSTEYS	OTEER
	total	ASTRO	Chima	CIVIL	ELECIRN	SCI	MECA	nuclear	DESIGN	ENGIN
total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
SCIENTISTS, TOTAL	19.7	20.9	6.9	4.8	21.8	26.2	5.0	18.0	46.2	27.2
fgysical sci.	13.2	10.6	5.3	. 9	12.9	24.3	3.4	17.3	23.0	18.6
CHEMISTS	4.7	2.8	5.2	. 9	2.7	15.8	. 3	5.6	1.8	5.4
PHYSICISTS/ASTRON.	8.5	7.8	1.1	*	10.2	8.5	3.1	11.7	21.2	13.9
mathematical sci.	1.9	5.0	*	*	2.9	*	. 8	*	10.5	1.7
mathematicians	1.8	4.6	*	*	2.8	*	. 8	*	10.3	1.4
STATISTICIANS	. 1	. 4	*	*	. 1	*	*	*	. 2	. 3
COMPUTER SPECIALISTS	. 5	. 4	*	*	1.6	*	*	*	1.4	. 1
ENUIROMMENTAL SCI.	. 9	1.5	. 4	. 7	. 6	. 8	. 4	*	1.2	1.7
Earth scientists	. 6	. 2	. 4	. 7	. 3	. 8	. 3	*	1.1	1.2
OCEANOGRAPHERS	. 1	. 1	*	*	. 2	*	*	*	*	. 3
ATMOSFHERIC SCI.	. 2	1.2	*	*	. 1	*	. 1	*	. 2	. 2
LIfe scienlists	1.7	1.0	. 2	2.8	1.7	1.0	. 3	. 6	1.6	3.3
BIOLOGICAL SCX.	1.1	. 2	. 1	2.0	1.3	. 3	*	. 6	1.1	2.1
AGRICULTURAL SCI.	. 4	. 5	*	. 2	*	. 7	. 3	*	. 5	. 9
medical Sci.	. 2	. 3	. 1	. 6	. 3	*	*	*	*	. 3
PSYCHOLOGISTS	. 8	. 4	*	*	1.4	*	*	*	3.4	1.4
SOCINL SCIENTISTS	. 7	2.0	*	. 3	. 7	*	*	*	5.1	. 4
ECONOMSTS	. 1	*	*	*	*	*	*	*	1.4	. 1
SOCIOLOGST/ANTHRO.	. 1	*	*	*	. 2	*	*	*	*	. 1
OTHER SOCIAL SCI.	. 5	2.0	*	. 3	. 5	*	*	*	3.6	. 1
ENG INEERS, TOTAL	80.1	78.9	93.1	95.0	77.8	73.8	95.0	82.0	52.6	72.4
AERO/ASTRO ENGINEER	4.0	44.1	. 2	. 7	. 8	*	6.7	4.3	*	1.6
CHEMICAL ENGINEERS	13.3	3.6	88.2	1.3	1.6	8.0	. 7	5.9	1.3	8.5
CIVIL ENGINEERS	10.3	3.1	. 9	83.7	. 4	*	2.5	. 1	2.1	6.8
ELEC./ELECTRON. ENG.	16.9	7.2	*	*	64.1	1.5	*	3.6	15.8	6.4
MATERIALS SCI. ENG.	8.0	*	1.9	*	2.0	59.7	2.0	*	*	2.9
mechanical eng.	9.4	6.6	*	. 4	. 8	. 9	65.7	5.9	5.9	7.0
nuclear eng.	2.8	. 6	. 3	*	. 3	. 8	. 9	58.4	2.9	. 8
SYSTEMS DESIGN ENG.	1.6	2.8	*	. 4	1.0	*	*	. 1	19.3	. 6
OTHER ENGINEERS	13.8	10.9	1.6	8.6	6.8	3.0	16.6	3.8	5.3	37.8
NON S/E, Total	. 3	. 2	*	. 2	. 4	*	*	*	1.2	. 4

* TOO FEW Cases to estimate

SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

TABLE B-28. MEDIAN ANNUAL SALARIES OF DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND SECTOR OF EMPLOMMENT: 1975 AND 1985

FIELD AND YEAR	TOTAL	...IND TOTAL	USTRY. . . SELFEMPL	4-YEAR COLL/ UNIV			$\begin{aligned} & \text { FED- } \\ & \text { ERAL } \\ & \text { GOV'T } \end{aligned}$	STATE/ LOCAL GOV'T
All FiEldS								
1975.	\$23,200	\$26,000	\$30,500	\$21,500	\$21,800	\$24,400	\$26,300	\$21,500
1985.	44,800	52,000	50,600	40,800	37,800	43,900	48,400	36,000
SCIENTISTS								
1975.	22,600	20,000	30,500	21,100	21,800	24,000	26,200	21,500
1985.	42,500	50,500	50,400	40,000	37,700	40,500	47,900	35,800
PHYSICAL SCIENTISTS								
1975....................	23,900	25,900	24,100	21,400	22,600	23,900	26,000	19,000
1985.....	47,000	51,100	44,900	41,700	46,000	45,600	49,600	35,600
Math Scientists								
1975.....	2i,200	25,600	\star	20,600	**	25,800	27,600	*
1985.....................	42,100	50,200	**	40,600	**	36,800	48,100	**
COMIFUTER SPECIALISTS								
1975....	23,400	24,000	**	22,700	**	**	24,900	**
1985....................	46,000	48,700	60,900	44,000	**	47,300	50,500	33,200
ENVIROMEENTAL SCIENTISTS								
1975.	23,500	26,200	25,500	21,200	**	23,400	27,500	19,600
1985.	46,600	54,400	55,200	40,900	**	46,200	50,000	36,100
LIFE SCIENTISTS								
1975....................	22,200	25,400	35,400	21,000	24,000	22,600	25,300	21,000
1985.	41,700	49,200	50,100	40,000	41,500	40,400	46,600	41,200
PSYCHOLOGISTS								
1975.	22,100	30,500	30,800	20,900	21,300	24,200	26,8C0	21,500
1985....	39,500	50,500	50,700	37,400	35,900	32,400	44,100	32,400
SOCIAL SGIENTISTS								
1975.	22,200	28,600	26,200	21,200	**	25,700	28,800	25,900
1985...................	40,500	50,600	42,600	39,000	**	38,400	48,200	36,400
ENGI NEERS								
1975....................	25,200	26,100	30,600	23,600	**	25,900	26,700	21,100
1985....	52,400	55,200	69,200	48,600	**	55,900	50,800	40,600
AERO/ASTRO ENGINEERS								
1975.	25,200	25,900	**	24,100	**	**	24,90C	**
1985..	53,800	56,600	**	53,100	**	**	51,800	**
CHEMICAL ENGINEERS								
1975.	26,400	27,300	**	24,700	**	**	**	**
1985.	55,700	58,600	**	48,100	**	**	**	**
CIVIL ENGINEERS								
1975.	22,900	24,300	**	22,600	**	**	23,400	20,500
1985.	48,500	50,400	**	47,100	**	**	**	**
ELEC. /ELECTRON. ENGINEERS								
1975....................	25,000	25,900	**	23,800	**	**	23,500	**
1985....	55,100	58,500	**	49,700	**	**	54,600	**
MECHANICAL ENGINEERS								
1975....	23,800	24,500	**	22,700	**	**	26,400	**
1985.	51,100	53,400	**	46,900	**	**	**	**
OTHER ENGINEERS								
1975....................	25,700	26,306	30,900	23,800	**	26,500	29,300	**
1985.....................	52,300	54,600	60,600	49,900	**	57,100	50,400	**

**NO MEDIAN COMPUTED FOR GROUPS HITH FEWER TEAN 20 INDIVIDUALS REPORTING SALARY
NOTE: MEDIANS COMPUTED FOR FULL-TIME EMPLOYED CIVILIANS ONLY.
SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

TABLE B-29: MEDIAN ANNUAL SALARIES OF DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND PRIMARY WORK ACTIVITY: 1975 AND 1985

FIELD AND YEAR	TOTAL	R\&D	MGMT. OF R\&D		TEACHING	
ALI FIELDS						
1975....................	\$23,200	\$23,000	\$30,100	\$28,600	\$20,600	\$25,500
1985....................	44,800	45,400	60,300	50,900	39,200	50,600
SCIENTISTS						
1975...................	22,600	22,700	30,000	28,000	20,300	25,400
1985...................	42,500	43,600	58,300	49,100	37,500	49,300
PHYSICAL SCIENTISTS						
1975...................	23,900	23,700	30,400	29,400	20,300	27,500
1985...................	47,000	46,600	60,600	56,500	39,000	58,300
MATE SCIENTISTS						
1975...................	21,200	22,700	31,400	27,100	19,900	25,600
1985....................	42,100	45,000	58,300	49,300	38,900	45,900
COMPUTER SPECIALISTS						
1975...................	23,400	23,000	30,600	27,400	22,100	**
1985...................	46,000	46,200	59,500	50,600	42,100	50,300
ENVIRONMENTAL SCIENTISTS						
1975...................	23,500	23,300	29,600	28,800	20,300	25,100
1985....................	46,600	45,700	57,000	55,800	39,400	51,500
LIFE SCIENTISTS						
1975...................	22,200	21,600	29,900	28,200	20,300	20,900
1985....................	41,700	40,500	57,700	50,200	37,400	45,500
PSYCHOLOGISTS						
1975....................	22,100	22,500	26,800	25,400	20,200	23,900
1985...................	39,500	39,700	50,800	43,300	36,700	44,100
SOCIAL SCIENTISTS						
1975....................	22,200	22,800	29,100	30,400	20,400	30,500
1985...................	40,500	42,500	51,400	47,800	36,800	48,800
ENGINEERS						
1975...................	25,200	23,800	30,400	30,700	22,900	25,600
1985...................	52,400	50,300	62,300	65,200	47,100	55,800
AERO/ASTRO ENGINEERS						
1975....................	25,200	23,700	32,400	**	24,500	**
1985...................	53,800	50,000	62,200	**	**	**
CHEMICAL ENGINEERS						
1975....................	26,400	25,000	30,300	33,100	23,400	**
1985.................. . .	55,700	50,700	61,100	75,500	47,000	**
CIVIL ENGINEERS						
1975................... .	22,900	21,700	26,700	28,200	22,000	24,100
1985...................	48,500	50,100	**	67,400	43,300	50,700
ELEC./ELECTRON. ENGINEERS						
1975...................	25,000	24,000	30,900	32,600	22,900	**
1985. .	55,100	52,400	68,500	65,800	47,400	**
MECHANICAL ENGINEERS						
1975....................	23,800	22,500	27,600	27,400	22,500	**
1985...................	51,100	49,700	60,600	**	46,200	**
OTHER EHGINEERS						
1975.................... .	25,700	23,800	30,600	30,800	23,400	26,600
1985...................	52,300	49,600	61,500	58,900	48,500	60,200

**NO MEDIAN COMPUZED FOR GROUPS WITH FEWER THAN 20 INDIVIDUALS REPORTING SALARY NOTE: MEDIANS COMPUTED FOR FULL-TIME EMPLOYED CIVILIANS ONLY.

SOURCE: NATIONAS SCIENCE FOUML. * SRS

FIELD AND YEAR	TOTAL	R\&D	MGKT. OF R\&D	GENERAL MGMT.	TEACHING	CON-SULTING
ALL FIELDS						
1975.	\$26,000	\$24,000	\$30,400	\$32,000	**	\$25,800
1985.	52,000	48,700	62,500	69,300	57,600	53,700
SCIENTİSTS						
1975.	26,000	23,900	30,300	32,200	**	26,300
1985...................	50,500	47,100	60,900	66,600	45,700	50,900
PHYSICAL SCIENTISTS						
1975.	25,900	24,000	30,200	32,500	**	28,400
1985.	51,100	48,200	61,100	75,700	**	60,000
MATH SCIENTISTS						
1975.	25.600	24,400	32,500	**	**	**
1985.	50,200	48,100	**	**	**	52,700
COMPUTER SPECIALISTS						
1975.	24,000	23,100	30,200	**	**	**
1985. ${ }^{\text {\% }}$	48,700	47,400	63,300	55,500	**	50,600
ENVIRONMENTAL SCIENTISTS						
1975.	26,200	25,300	30,300	30,200	**	25,400
1985.	54,400	50,800	60,900	82,200	**	54,600
LIFE SCIENTISTS						
1975.	25,400	22,700	30,300	28,700	**	20,900
1985.	49,200	42,900	62,700	55,900	**	50,100
PSYCHOLOGISTS						
1975.	30,500	24,500	34,400	42,000	**	30,400
1985.	50,500	46,500	**	60,700	**	54,500
SOCIAL SCIENTISTS						
1975..........	28,600	24,000	32,000	36,800	**	30,800
1985....................	50,600	50,300	**	65,400	**	50,900
ENGINEERS						
1975...................	26,100	24,200	30,600	31,800	**	25,600
1985.	55,200	50,500	64,800	70,800	**	58,200
AERO/ASTRO ENGINEERS						
1975.	25,900	23,300	32,300	**	**	**
1985.	56,600	49,400	64,300	**	**	**
CHEMICAL ENGINEERS						
1975.	27,300	25,100	30,500	35,300	**	**
1985....	58,600	50,900	60,900	**	**	**
CIVIL ENGINEERS						
1975....................	24,300	21,800	**	30,600	**	24,000
1985.	50,400	50,200	**	**	**	52,100
ELEC./ELECTRON. ENGINEERS						
1975....................	25,900	24,400	32,100	30,800	**	**
1985....................	58,500	53,200	70,200	75,400	**	**
MECHANICAL ENGINEERS						
1975.....	24,500	22,700	27,100	**	**	**
1985.....................	53,400	50,900	**	**	**	**
OTHER ENGINEERS						
1975....................	26,300	24,200	30,600	31,600	**	25,900
1985....................	54,600	49,900	62,600	59,500	**	60,400

**NO MEDIAN COMPUTED FOR GROUPS WITH FEWER THAN 20 Imdividuals REPORTIGG SALARy note: medians computed for full-time employed civilians only.
source: national science foundation, sRS
table b-31. median annual salaries or docitoral scientists and engineers in 4-YEAR COLLEGES/UNIVERSITIES BY FIELD AND PRIMARY WORX ACTIVITY: 1975 AND 1985

FIELD AND YEAR	TOTAL	R\&D	MGMT. OF R\&D	$\begin{aligned} & \text { GEN- } \\ & \text { ERAL } \\ & \text { MG:TT } \end{aligned}$	TEACHING	$\begin{array}{r} \text { CON- } \\ \text { SULT- } \\ \text { ING } \end{array}$
ALL FIELDS						
1975.	\$21,500	\$21,200	\$28,100	\$27,800	\$20,600	\$23,500
1985.	40,800	41,400	56,300	50,300	39,300	38,500
SCIENTISTS						
1975.	21,100	20,900	27,700	27,500	20,400	23,700
1985....................	40,000	40,600	55,900	48,800	37,700	38,200
PEYSICAL SCIENTISTS						
1975....................	21,400	22,000	29,300	27,200	20,600	**
1985.	41,700	44,900	60,600	53,200	39,200	**
MATH SCIENTISTS						
1975.	20,600	20,800	**	26,600	20,000	**
1985................ . . .	40,600	43,700	**	49,400	39,200	**
COMPUTER SPECIALISTS						
1975...............	22,700	22,500	**	27,000	22,100	**
1985....................	44,000	45,000	**	47,800	42,300	*
ENVIRONMENTAL SCIEN 「ISTS						
1975....................	21,200	20,400	26,400	28,400	20,500	**
1985.....................	40,900	42,500	58,900	55,400	39,500	**
LIFE SCIENTISTS						
1975.	21,000	20,600	29,000	28,600	20,300	**
1985.	40,000	38,800	55,900	50,500	37,600	40,500
PSYCHOLOGISTS						
1975.	20,900	22,000	24,800	25,800	20,200	**
1985.	37,400	38,400	**	44,900	36,700	**
SOCIAL SCIENTISTS						
1975....................	21,200	21,600	26,200	28,800	20,400	**
1985.	39,000	41,400	**	45,500	36,900	**
ENGINEERS						
1975.	23,600	22,300	28,900	30,500	23,000	**
1985.	48,600	47,700	57,500	62,200	46,600	**
AERO/ASTRO ENGINEERS						
1975....................	24,100	22,400	**	**	24,700	**
1985....................	53,100	**	**	**	**	**
CHEMICAL ENGINEERS						
1975.	24,700	**	**	32,000	23,500	**
1985....................	48,100	41,600	**	**	47,600	**
CIVIL ENGINEERS						
1975.	22,600	**	**	28,800	22,000	**
1985.	47,100	**	**	**	43,200	**
ELEC. /ELECTRON. ENGINEERS						
1975.	23,800	23,700	**	34,200	22,900	**
1985.	49,700	48,800	**	6C 800	47,200	**
MECHANICAL ENGINEERS						
1975....................	22,700	20,100	**	**	22,600	**
1985....................	46,900	**	**	**	45,300	**
OTHER ENGINEERS						
1975....................	23,800	22,100	28,700	30,600	23,400	**
1985....................	49,900	48,800	58,300	60,700	48,300	**

* N NO MEDIAN COMPUTED FOR GROUPS WITH FEIER THAN 20 INDIVIDUALS REPORTING SALARY NOTE: MEDIANS COMPUTED FOR FULL-TIME EMPLOYED CIVILIANS ONLY.

SOURCE: NATIONAI SCIENCE FOUNDATION, SRS
table b-32. MEDIAN ANNUAL SALARIES OF DOCTORAL SCJENTISTS AND ENGINEERS BY FIELD, SEX, AND RACIAL/ETHNIC GROUP: 1975 AND 1985

						RACE.			
FIELD AND YEAR	TOTAL	MEN	HOMEN	WHITE	BLACK	AMERICAN INDIAN	ASIAN	OTHER	HIS- PANIC(1)
ALL FIELDS									
1975....................	23,200	23,500	19,100	23,300	22,800	19,100	21,500	20,600	22,500
1985.	44,800	46,000	35,500	44,800	40,100	42,100	45,500	40,300	42,200
SCIENTISTS									
1975.	22,600	23,000	19,000	22,700	22,600	18,900	21,000	20,400	22,200
1985.	42,500	44,300	35,300	42,600	39,400	40,200	42,600	36,900	40,600
PHYSICAL SCIENTISTS									
1975...................	23,900	24,100	19,100	24,100	23,100	**	20,900	**	22,000
1¢85...................	47,000	47,900	38,600	47,600	42,700	**	44,300	**	47,300
MATH SCIENTISTS									
1975....................	21,200	21,400	18,400	21,200	21,700	**	20,700	**	21,200
1985....	42,100	42,600	35,400	42,200	41,200	**	39,500	**	39,300
COMPUTER SPECIALISTS									
1975.	23,400	23,700	18,000	23,500	**	**	21,000	**	**
1985...................	4,6,000	46,700	38,600	45,900	**	**	46,900	**	48,600
ENVIROMMENTAL SCIENTISTS									
1975...................	23,500	23,600	19,100	23,500	**	**	21,900	**	**
1985...................	46,600	47,300	38,700	46,100	**	**	53,000	**	40,600
LIFE SCIENTISTS									
1975..	22,200	22,600	19,000	22,300	21,900	**	20,700	**	22,300
1985...................	41,700	43,400	35,100	41,800	40,000	39,800	41,000	**	40,600
PSYCHOLOGISTS									
1975...................	22,100	22,700	19,600	22,000	23,100	**	21,700	**	22,800
1985....................	39,500	40,700	34,800	39,700	35,400	**	37,200	**	36,600
SOCIAL SCIENTISTS									
1975.	22,200	22,600	18,700	22,200	22,400	**	21,400	**	22,500
1985.	40,500	41,600	34,600	40,600	38,600	**	39,600	**	36,500
ENGINEERS									
1975.	25,200	25,200	21,200	25,500	25,100	**	22,400	**	23,900
1985..................	52.400	52,600	43, 300	53,600	45,600	**	50,300	**	50,100
AEKO/ASTRO ENGINEERS									
1975....................	25,200	25,300	**	25,700	**	**	23,100	**	**
2985....................	53,800	54,000	44,500	55,100	**	**	40,900	**	**
CHEMICAL ENGINEERS									
1975.	26,400	26,400	**	26,900	**	**	22,600	**	**
1985.....	55,700	55,800	43,500	60,800	**	**	50,000	**	**
CIVIL ENGINEERS									
1975.	22,900	22,900	**	23,300	**	**	20,800	**	**
1985...................	48,500	48,700	37,000	48,600	**	**	45,100	**	**
ELEC. /ELECTRON. ENGINEERS									
1975...................	25,000	25,000	**	25,300	**	**	23,100	**	**
1985...................	55,100	55,300	45,600	55,700	**	**	52,900	**	**
MECHANICAL ENGINEERS									
1975....................	23,800	23,800	**	24,200	**	**	21,700	**	**
1985...................	51,100	51,300	42,000	51,700	**	**	50,600	**	**
OTHER ENGINEERS									
1975....................	25,700	25,700	21,000	25,900	**	**	22,600	**	**
1985...................	52,300	52,500	44,200	52,900	51,000	**	50,400	**	60,000

(1)HISPANICS INCLUDE MEMBERS OF ATU RACIAL GROUPS.
**NO MEDIAN COMPUTED FOR GROUPS WITH FEWER THAN 2C INDIVIDUALS REPORTING SALARY
NOTE: MEDIAN COMPUTED FOR FULL-TIME EMPLOYED CIVILIANS ONLY.
SOURCE: NAITONAL SCIEMRE FOUNDATION, SRS
table b-33. MEDIAN ANNUL SALARIES OF DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD AND yEARS OE PROFESSIONAL EXPERIENCE: 1985

** NO MEDIAN COMPUTED FOR GROUPS WITH FEWER THAN 20 INDIVIDUALS REPORTING SALARY NOTE: MEDIANS COMPUTED FOR FULL-TIME EMPLOYED CIVILIANS ONLY.

SOURCE: NATIONAL SCIENCE FOUNDATION, SR

TABLE B-34. SELECTED EMPLOMMENT RATES OF DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD, SEX, AND RACIAL/ETHNIC GROUP: 1975

EMPLOYMENT RATES(1)

FIELD, SEX, AND RACIAL/ ETENIC GROUP(2)	LABOR FORCE participation rate	UTEMPLOMMENT RATE	S/E EMPLOMTENT RATE
TOTAL			
TOTAL.	95.6	1.0	93.9
SEX			
MEN.	96.3	. 8	93.9
WOMEN.	89.1	2.9	92.9
RACE			
WHITE...................	95.6	. 9	93.9
BLACK..................	96.6	1.0	86.5
NATIVE AMERICAN........	98.6	*	95.3
ASIAN/PACIFIC ISLANDER.	98.8	1.6	96.4
ETHNICITY			
HISPANIC................	96.1	. 5	94.2
SCIENTISTS			
TOTAL.	95.1	1.0	93.5
SEX			
MEN.	95.8	. 8	93.5
HOMEN.	89.1	2.9	92.9
RACE			
WHITE.	95.2	1.0	93.5
BLACK.	96.4	. 8	85.7
NATIVE AMERICAN.	98.6	*	95.1
ASIAN/PACIFIC ISLANDER.	98.4	2.1	95.9
ETHNICITY			
YISPANIC.	96.4	. 5	94.0
PHYSICAL SCIENTISTS			
TOTAL.	94.8	1.4	91.6
SEX			
MEN.	95.3	1.2	91.8
HOMEN.	84.6	4.7	87.7
RACE			
WHITE.	94.8	1.3	11.5
BLACK.	94.2	1.9	44.8
NATIVE AIERICAN.	**	**	**
ASIAN/PACIFIC ISLANDER.	99.0	3.4	96.9
ETHNICITY			
HISPANIC.	99.7	*	92.8
MATH SCIENTISTS			
TOTAL.	96.6	. 7	94.4
SEX 94.4			
MEN.	97.2	. 6	94.6
WOMEN.	88.5	1.5	92.1
RACE			
WHITE..................	96.5	. 7	94.3
BLACK.	100.0	*	100.0
NATIVE AMERICAN.	**	**	**
ASIAN/PACIFIC ISLANDER.	99.2	. 8	97.9
ETHNICITY			
HISPANIC................	97.3	*	93.7
COMPUTER SPECIALISTS			
TOTAL.	99.9	. 1	99.1
SEX			
MEN.	100.0	. 1	99.1
HOMEN....................	98.0	*	99.3
RACE			
HHITE.	100.0	*	99.0
BLACK.	**	**	**
NATIVE AMERICAN.	**	**	**
ASIAN/PACIFIC ISLANDER.	98.9	*	100.0
ETHNICITY			
HISPANIC.	**	**	**

(1) SEe technical notes for definition of rates.
(2) HISPANICS INCLUDE MEMBERS OF ALL RACIAL GROUPS.

```
* LESS thaN 0.05 PERCENT
** tOO feh Cases tO estimate
```

TABLE B-34. SELECTED ERPLOYHENT RATES OF DOCTORAL SCIENTISTS AND ENGINEERS BY FIEID, SEX, AND RACIAL/ETEXIC GROUP: 1975

EMPLOMENT RATES(1)

FIEID, SEX, AND RACIAL/ ETENIC GROUP(2)	LABOR FORCE PARTICIPATION RATE	UTEMPLOYMENT Rate	S/E ERPLOMENT RATE
ENVIROMMENTAL SCIENTISTS			
TOTAL.	97.8	. 8	97.3
SEX			
MEN	97.9	. 7	97.3
HOTEN.	93.9	4.1	98.5
RACE			
WEITE.	98.0	. 8	97.2
BLACR.	**	**	**
NATIVE AMERICAN.	**	**	**
ASIAN/PACIFIC ISLANDER.	98.3	1.7	100.0
ETHNICITY			
EISPANIC.	100.0	*	95.4
LIFE SCIENTISTS			
TOTAL.	93.7	1.0	96.3
SEX			
Mmen.	94.9	. 7	96.4
VCNEN.	86.2	3.4	95.5
RACE			
WHITE.	93.9	1.0	96.3
BLACR.	94.6	*	89.8
NATIVE AMERICAN.	95.9	*	92.9
ASIAN/PACIFIC ISLANDER.	97.6	1.9	97.4
ETHNICITY			
ErSPANIC................	93.5	. 2	99.0
PSYCHOLOGISTS			
TOTAL......................	96.6	. 7	95.3
SEX			
MER	97.7	. 5	95.5
WCMEN	93.0	1.6	94.5
RACE			
WEITE.	96.7	. 8	95.6
BLACK.	100.0	1.0	79.2
HATIVE ANERICAN.	**	**	**
ASIAN/PACIFIC ISLANDER.	97.3	. 7	96.9
ETHNICITY			
BISPANIC................	96.8	*	93.3
SOCIAL SCIENTISTS			
TOTAL.	94.9	1.0	87.6
SEX ${ }^{\text {c }}$			
MEN.	95.3	. 6	87.6
HCMEN.	91.6	3.4	88.2
RACE			
WHITE.	94.8	. 9	87.8
BLACK..................	97.3	. 7	81.5
NATIVE AMERICAN.	100.0	*	90.9
ASIAN/PACIFIC ISLANDER.	99.3	1.2	87.3
Etharcity			
HISPANIC................	96.4	2.6	83.8
ENGINEERS			
TOTAL.	98.2	. 7	95.8
SEX			
MEN	98.3	. 7	95.8
WOMEN.	86.8	1.7	97.9
RACE			
WHITE.	98.2	. 7	95.7
BLACK.................. .	100.0	3.5	99.3
NATIVE AMERICAN.	**	**	**
ASIAN/PACIFIC ISLANDER.	99.6	. 4	97.4
ETHNICITY			
HISPANIC.	95.1	. 6	95.3

(1) SEe techaical notes for definition of rates.
(2) Hispanics include mabers of all racial groups.

* Less than 0.05 Percent
** TO FEH CASES TO ESTIMATE

TABLE D-34. SELECTED EMPLOMENT RATES OF DOCTORA', SCIENTISTS AND ENGINEERS BY FIEID, SEX, AND REKAOE/ETHNIC GROUP: 1975

ETPLOYTENT RATES(1)

FIELS, SEX, AND RACIAL/ ETHNIC GROUP(2)
AEROIASIRO ENGINEERS

AEROIASIRO ENGINEERS TOTAL.

\qquad PARTICIPATION RATE RATE
S/E BPLLOMENT

RATE

TABLE B-34. SELECTED EMPLOYMENT RATES OF DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD, SEX, AND RACIAL/ETHNIC GROUP: 1975

EMPLOYMENT RATES (1)

FIELD, SEX, AND RACIAL/ EIENIC GROUP(2)	LABOR FORCE PARTICIPATION RATE	UNEMPLOYMENT RATE	S/E EMPLOMMENT RATE
OTHER ENGINEERS			
TOTAL.	98.1	. 5	96.3
SEX			
MEN.	98.2	. 5	96.3
WCMEN.	87.3	1.5	97.0
RACE			
WEITE.	98.2	. 6	96.3
BLACK...................	**	**	**
NATIVE AMERICAN.	**	**	**
ASIAN/PACIIIC ISLANDER.	99.7	. 1	97.4
ETHNICITY			
HISPANIC................	85.6	1.9	100.0

(1) SEE TECHNICAL NOTES FOR DEFINITION OF RATES.
(2) $\operatorname{liSPANICS}$ INCLUDE MEMBERS OF ALL RACIAL GROUPS.

```
* less than 0.05 percent
** TOO FEW CASES TO ESTIMATE
```

SOURGE: NATIONAL SCIENCE FOUNDATION, SRS

TABLE B-?'S. SELECTED EMPLOMENT RATRS OF DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD, SEX, AND RACIAL/ETENIC GROUP: 1985

EMPLOYMENT RATES(1)

PIELD, SEX, AND RACIAL/ ETHNIC GROUP (2)	LABOR FORCE PRRTICIPATION RATE	UNEMPLOMEENT RATE	S/E EMPLOYMENT RATE
TOTAL			
TOTAL......................	95.1	. 8	91.3
SEX			
MEN.	95.4	. 7	91.5
HOMEN.	93.1	1.8	89.8
RACE			
WaITE.	94.7	. 8	91.0
BLACK. .	97.5	1.2	85.6
NATIVE AMERICAN........	96.1	. 4	90.4
ASIAN/PACIFIC ISLANDER.	98.2	. 9	94.9
ETENICITY			
EISPANIC.	96.7	1.6	91.1
SCIENTISTS			
TOTAL.	94.6	. 9	90.8
SEX			
MEN.	95.0	. 7	91.1
WOMEN.	93.0	1.9	89.6
RACE			
WHITE.	94.3	. 9	90.7
BLACK.	97.3	1.3	84.5
NATIVE AMERICAN.	95.3	. 5	88.5
ASIAN/PACIFIC ISLANDER.	97.7	1.0	94.5
ETHNICITY			
HISPANIC................	97.9	1.4	92.5
PHYSICAL SCIENTISTS			
TOTAL....	93.2	. 9	90.9
SEX			
MEN. .	93.4	. 8	90.9
WOHEN.	90.6	2.2	90.4
PACE			
WHITE.	92.6	1.0	90.3
BLACR.	100.0	. 4	96.4
NATIVE AMERICAN........	100.0	*	100.0
ASIAN/PACIFIC ISLANDER.	97.9	. 4	95.9
ETHNICITY			
gispanic.	99.7	. 6	97.8
MATE SCIENTISTS			
TOTAL.	96.3	. 5	92.4
SEX			
MEN..	96.7	. 4	92.4
WOREN.	92.9	1.0	92.8
RACE			
WHITE.	96.1	. 5	92.4
BLACK.	100.0	*	94.0
NATIVE AMERICAN.	**	**	**
ASIAN/PACIFIC ISLANDER.	98.4	. 4	93.5
ETHNICITY			
EISPANIC.	99.2	*	100.0
CCHPUTER SPECIALISTS			
TOTAL.	99.9	*	99.2
SEX			
MEN.	100.0	*	99.2
HOMEN.	99.2	. 1	99.6
RACE			
HHITE.	99.9	*	99.1
BLACK.	100.0	*	98.8
Native american.	**	**	**
ASIAN/PACIFIC ISLANDER.	100.0	. 2	100.0
ETHNICITY			
HISPANIC................	100.0	*	100.0

(1) SEE TECHNICAL NOTES FOR DEFINITION OF RATES.
(2) HISPANICS INCLUDE MEMBERS OF ALL RACIAL GROUPS.

```
* LESS THAN 0.05 PERCENT
** TOO FEW CASES TO ESTIMATE
```

TABLE B-3S. SELECTED EMPLOYMENT RATES OF DOCTORAL, SCIENTISTS AND ENGINEERS BY FIELD, SEX, AND RACIAL/ETENIC GROUP: 1985

EMPLOYMENT RATES(1)

FIELD, SEX, AND RACIAL/ EIANIC GROUP(2)	LABOR FORCE PARTICIPATION RATE	UNEEPLOMMENT RATE	S/E EMPLOYMENT RATE
ENVIRONMENTAL SCIENTISTS			
TOTAL.	96.8	. 6	96.3
SEX			
MEN.	96.8	. 6	96.4
HOMEN.	96.1	1.2	95.6
RACE			
WHITE.	96.6	. 7	96.2
BLACK.	99.0	*	100.0
NATIVE AMERICAN.	**	**	**
ASIAN/PACIFIC ISLANDER.	98.9	. 2	97.3
ETHNICITY			
HISPANIC..	100.0	*	89.6
LIFE SCIENTISTS			
TOTAL.	23.7	1.1	94.8
SEX			
MEN. .	94.4	. 9	95.1
HOMEN.	91.2	1.8	93.7
RACE			
WHITE	93.5	1.1	94.8
BLACK.	94.4	1.3	89.0
NATIVE AMERICAN.	88.9	1.7	95.8
ASIAN/PACIFIC ISLANDER.	96.9	1.7	96.2
ETHNICITY			
hispanic. .	96.9	1.6	97.3
PSYCHOLOGISTS			
TOTAL. .	95.9	. 9	91.9
SEX			
MEN.	96.3	. 6	91.7
HOMEN.	95.0	1.4	92.4
RACE			
WHITE	95.8	. 8	92.2
BLACR.	99.2	. 8	80.6
NATIVE AHERICAN.	96.3	*	92.3
ASIAN/PACIFIC ISLANDER.	99.0	2.5	87.8
Ethnicity			
HISPANIC.	95.0	2.7	88.6
SOCLAL SCIENTISTS			
TOTAL.	94.4	1.0	79.8
SEX			
MEN.	94.7	. 6	80.7
HOMEN.	93.1	2.7	76.0
RACE			
WHITE	94.1	1.0	79.5
BLACK.	97.3	2.0	77.4
NATIVE AMERICAN.........	97.7	*	70.1
ASIAN/PACIFIC ISLANDER.	97.3	1.2	87.5
ETENICITY			
HisPanic.	99.2	1.4	82.3
ENGINEERS			
TOTAL.	97.5	. 5	93.4
SEX			
MEN.	97.5	. 5	93.3
WOMEN.	97.7	. 9	96.9
RACE			
WHITE	97.1	. 5	92.8
BLACK.	99.4	*	96.5
IIATIVE AMERICAN.........	100.0	*	100.0
ASIAN/PACIFIC ISLANDER.	99.1	. 8	95.6
ETHNICITY			
HISPANIC....	89.9	2.9	82.6

(1) SEE TECHNICAL NOTES FOR DEFINITION OF RATES.
(2) HISPANICS INCLUDE MEMBERS OF ALL RACIAL GROUPS.

```
* less than 0.05 PERCENT
** TOO REN CASES TO ESTIMATE
```

TABLE B-35. SELECTED EMPLOMENT RATES OF DOCTORAL SCIENTISTS AND ENGINEERS BY FIELD, SEX, AND RACIAL/ETHNIC GROUP: 1985

EMPLOYMENI RATES(1)

FIELD, SEX, AND RACIAL/ ETHNIC GROUP(2)	LABOR FORCE Participation rate	$\begin{gathered} \text { UNEMPLOMMENT } \\ \text { RATE } \end{gathered}$	S/E EMPLOYMENT Rate
AERO/ASTRO ENGINEERS			
TOTAL.	99.9	. 5	94.6
SEX			
MEN.	100.0	-	94.5
HOMEN.	97.9	*	100.0
RACE			
WHITE.	99.9	. 5	93.7
BLACK.	**	**	**
NATIVE AMERICAN.........	**	**	**
ASIAN/PACIFIC ISLANDER.	100.0	. 6	100.0
ETHNICITY			
HISPANIC................	**	**	**
CHEMICAL ENGINEERS			
TOTAL.	94.5	1.8	87.9
SEX			
MEN.	94.6	1.7	87.9
HOMEN.	92.9	3.8	93.1
RACE			
WHITE.	93.7	1.4	85.0
BLACR.	100.0	*	95.5
NA"IVE AMERICAN.	**	**	**
ASIAN/PACIFIC ISLANDER.	96.7	2.8	95.4
ETHNICITY			
HISPANIC.	100.0	*	95.6
CIVIL ENGINEERS			
TOTAL.	96.1	. 8	92.7
SEX			
MEN.	96.1	. 7	92.7
WOMEN.	96.9	4.2	94.5
RACE			
WHITE.	95.6	1.0	91.3
BLACK.	100.0	*	100.0
NATIVE AMERICAN.	**	**	**
ASIAN/PACIFIC ISLANDER.	97.8	*	97.6
ETHNICITY			
HISPANIC................	100.0	*	100.0
ELEC. /ELECTRON. ENGINEERS			
TOTAL. .	98.3	. 6	94.7
SEX			
MEN.	98.3	. 6	94.6
WOHEN.	99.4	*	98.8
RACE			
WHITE.	98.0	. 7	93.9
BLACK.	100.0	*	100.0
NATIVE AMERICAN........	**	**	**
ASIAN/PACIFIC ISLANDER.	99.3	*	97.6
ETHNICITY			
HISPANIC................	74.5	*	89.0
MECHANICAL ENGINEERS			
TOTAL.	97.2	*	92.2
SEX			
MEN.	97.2	*	92.1
WOMEN. .	95.1	*	96.6
RACE			
WHITE.	96.4	*	93.7
BLACK.	96.4	*	100.0
NATIVE AMERICAN........	**	**	**
ASIAN/PACIFIC ISLANDER.	100.0	*	85.4
ETHNICITY			
HISPANIC.	80.5	*	100.0

(1) SEE TECHNICAL NOTES FOR DEFINITION OF RATES.
(2) HISPANICS INCL.UDE MEMBERS OF ALL RACIAL GROUPS.

* Less than 0.05 percent
** TOO FEW CASES TO ESTIMATE

EPRLOYMENT RATES(1)

FIELD, SEX, AND RACIAL/	LABOR FORCE ETERIC GROUP (2)	UNEMPLOMMENT	S/E EMPLOMMENT
RATE			

(1) SEE TECANICAL NOTES FOR DEFINITION OF RATES.
(2) HISPANICS INCLUDE MEMBERS OF ALL RACIAL GROUPS.

* less tan 0.05 Percent
** TOO FEW CASES TO ESTIMATE
SOURCE: NATIONAL SCIENCE FOUNDATION, SRS

appendix c

reproduction of 1985 survey questionnaire

Page
1985 Survey of Doctorate Recipients
111

1985 SURYEY OF DOCTORATE RECIPIENTS

CONDUCTED BY THE NATIONAL RESEARCH COUNCIL WITH THE SUPPORT OF THE NATIONAL SCIENCE FOUNDATION, THE NATIONAL ENDOWMENT FOR THE HUMANITIES, THE NATIONAL INSTITUTES OF HEALTH, AND THE DEPARTMENT OF ENERGY

NOTE: THIS INFORMATION IS SOLICITED UNDER THE AUTHORITY OF THE NATIONAL SCIENCE FOUNDATION ACT OF 1950, AS AMENDED. ALL INFORMATION YOU PROVIDE WILL BE TREATED AS CONFIDENTIAL, WILL BE SAFEGUARDED IN ACCORDANCE WITH THE PROVISIONS OF THE PRIVACY ACT OF 1974 , and Will be used for statistical purposes only. information will be released only in the form of statistical summaries or in a FORM WHICH DOES NOT IDENTIFY INFORMATION ABOUT ANY PARTICULAR PERSON. YOUR RESPONSE IS ENTIRELY VOLUNTARY AND YOUR FAILURE TO PROVIDE SOME OR ALL OF THE REQUESTED INFORMATION WILL IN NO WAY ADVERSELY AFFECT YOU.

If your name and address are incorrect, please enter correct information below.
\qquad
\qquad

1. Institution/Year
of Doctorats
2. Date of Birth
3. Marital Status

4a. What is.your racial background?
$\begin{array}{llll}1 \square & \square & \text { American Indian or Alaskan Native } & 3 \\ 2 & \square & \text { Black } \\ & \square & 4 & \\ \text { Asian or Pacific Isiznder } & \text { White }\end{array}$

4b. Is your ethnic heritage Hispanic?

(28)
6. Are you physically handicapped?
1Yes
2(33)

If Yes, what is the nature of your handicap(s)? (Mark as many as apply)
Between 6 and 18 years of age?(29)
\square Yes How many? \qquad (32)
5. Do you have aliy children
Under 6 years of age?
7. Citizenship
$1 \square$ U.S. Native BornU.S. Naturalized
3Non-U.S., Immigrant (Perm. Res.)

4 Non-U.S., Non-Immigrant (Temp. Res.)
(38)
IF NON-U.S., specify country of citizenshipVisual
3Auditory

Ambulatory \square Other, specify (34.37)
8. Since recelving the doctorate, how many fultime squivalent years of professional work experience have you had? \qquad Years(z)
9. What was your employment status (includes postdoctoral appointment ${ }^{*}$) during February 1985?

1. Employed full-time (Skip to \#13)
2. Employed part-time

If you were employed part-time, were you seeking full-time employment?
A \square yes
BNo (44)
3. Postdoctoral appointment ${ }^{\text {- }}$

If you held a postdoctoral appointment, was it
AFull.time
BPart-time
(45)
(Skip to \#13)

[^35]10. If you were employed part-time during FEBRUARY 1985, what was the MOST important reason for being in part-time status?

Enter number from below (46)

1. Part-time employment preferred
2. Full-time position not àzailable
3. Constraints due to family or marital status
4. Other, specify \qquad
(Skip to \#13)
5. If you were unemployed and seeking enmployment during Fobruary 1985 was your job search restricted by:

Geographic location
2. Family responsibilities
3. Need for part-time employment
4. Other, specify
5. No restrictions (Skip to \#28)
12. If you were not smployed and not seeking work during Fobruary 1985, what was the most important reason for not seeking work?

Enter number from below (48)

1. Temporarily absent for health or personal ieasons
2. Tending to family responsibilties
3. Suitable job not available
4. Other, specify \qquad
(Skip to \#28)
5. Please give the name of your principal employer (company, organization, posidoctoral institution, etc. or, if self employed, write "self"'l and actual place of employment during FEBRUARY 1985.

Name of Employer
(49.56)
City \quad State \quad ZIP \quad (57.65)
14. From the Employment Specialties List on page 4 select and enter both the number and title of the employment specialty most closely related to your principal employment or postdoctorsl appointment during FEBRUARY 1985. Write in your specialty if it is not on the list.

Number
Titie of Employment Specialty
(66.68)
15. Which category below best describes the type of your principal employment OR postdoctoral appoinument during FEBRUARY 1985?

Enter number from below (69.70)

1. Business or industry (including self-employed)
2. Junior coliege, 2-year college. technical institute
3. Medical school (including university affiluted hospital or medical center)
4. 4 -year college
5. University, other than medical school
6. Elementary or secondary school system
7. Private foundation
8. Hospital or clinic
9. U.S. milhary service, active duty, or Commissioned Corps, e.g., USPHS, NOAA
10. U.S. government, civilian employee
11. State government
12. Local or other government, specify
13. Nonprost Organization, other than those usted above
14. Other, specify
15. If you were employed during FEBRUARY 1985 in a speciality field other than your field of Ph.D., what was the MOST important reason for being in that position?

Enter number from below :71)

1. Better pay
2. More attractive career options
3. Preferred specific geographic location
4. Constraints due to family or marital status
5. Position in Ph.D. field not avallable
6. Promoted into new field
7. Other, specify \qquad
8. If you were employed by an academic institution during FEBRUARY 1985,
A. What was the rank of your position?

Enter number frem below (73)

FACULTY:

1. Professor
2. Associate professor
3. Assistant professor
4. Instructor
5. Administrator
6. Other, specify

NONFAC'JLTY:
7. Teaching staff
8. Research staff
9. Other, specify
17. If your doctorate is in a humanitias field and you were employed in a non-academic job in FEBRUARY 1985, what was the MOST important reason for your decision to enter the job?

Enter number from below (72)

1. Batter pay
2. More attractive career options
3. Preferred specific geographic location
4. Constraints due to family or marital status
5. Academic position not avalable
6. Other, specify \qquad
B. What was your tenure status?Tenured, Year
2 Not Tenured, in tenure•track position
Not Tenured, not in tenure-track position (74)
7. What is your best estimate of the percentage of your professional work time that you devoted to each of the following activities during a typical weok in your principal job? (Total should equal 100\%)

\%	
1.	Teaching (10)
2.	8 asic research (12)
3.	Applied research (14)
4.	Develorment of equipment, products, systems, data (16)
5.	Design (18)
6.	Writing, editing (20)
7.	Professional services to Individuals (22)
8.	Management of R\&D (24)
9.	Management of educational/other programs (26)
10.	Consulting (28)

$\%$
11. Operations-production, maintenance, construction, installation $\mathbf{1 3 0}$
12. -. Quality control, testing, evaluation (32)
13. _- Sales, marketing, purchasing, estimating (34)
14. __ Archival work (36)
5. - Curatorial work 138i
16. _- Performing arts (40)
17. _Other, specify
(42)
TOTAL $=100 \%$
a. What were your primary and secondary work activities? (Enter number 1.17 from question above) $\quad \square$ Primary (44.45) \square Secondary (46-47)
20. What was the basic annual salary* associated with your principal professional employment during FE8RUARY 1985 ? If you were on a postdoctoral appointment (see question 9 for definition), what was your stipend plus allowances?
\qquad
Check whether salary was for $\square 9.10$ months or $\square 11 \cdot 12$ months (51)

- Easic salary is your annual salary before deductions for income tax, social security, returement, etc., but does not include bonuses, overtıme. summer teaching, or other payment for professional work.

21a. After receiving your doctorate, did you have to acquire formal training in any of the following arses in order to obtain your presemt position?
$1 \square$ Yes $2 \square$ No (52) IF YES, specify below

1. \square Foreign languages
2. \quad Computer science
3.
4.

Management and administration
5.
22. Was any of your work during FE8RUARY 1985 supported or sponsored by U.S. Government funds?
$1 \square$
Yes
2No
3Don't Know (60)

IF YES, which federal agencies or departments were supporting the work?

Enter number(s) from the list of Federal Supporting Agencies on page 4.
\qquad (61.72)
23. Listed below are selected topics of national interest. If you devoted a significant proportion of your professional time to any of these problem areas during FE8RUARY 1985, please give the corresponding number of the ONE on which you spent the MOST time.

Enter number from below (73.74)

1. Energy or fuel
2. Space
3. Health
4. Defense
5. Environ. protection, pollution control
6. Education (orher than teaching)
7. Crime prevention and control
8. Food and other agricultural products
9. Natural resources, other than fuel or food
10. Community development and services
11. Housing (planning, design, construction)
12. Transportation, communications
13. Cultural life
14. Other area, specify \qquad

15. What percens of your professional time did you devote to energy or fuel activities during a typical week? \qquad percent (75.76)

25. From the list below, give the corresponding number of the ONE energy source that involved the LARGEST proportion of your energy-related work during

 FE8RUARY 1985.1. Coal and coál products

Enter number from below (77)
2. Petroleum (including oil shale and tar sands) or natural gas
6. Direct solar lincluding space and water heating, thermal, electric)
3. Fission
7. Indirect solar (winds, tides, biomass, etc.)
4. Fusion
8. Geothermal
5. Hydroenergy
9. Other, specify \qquad
26. Please read the following list of energy-related activities and give the corresponding number(s) from the list below of the activitylies) in which you were engaged during FE8RUARY 1985. Enter number(s) from below

1. Exploration
2. Extraction (gas, oil, mining)
3. Manufacture of energy-related components or products
4. Fuel processing (including refining and enriching)
5. Eiectric power generation
6. Transportation, transmission, distribution of fuel or energy
7. Energy storage
8. Energy utilization, management
9. Fuel reprocessing or disposa!
10. Energy conservation
11. Environmental impact (health, economic, etc.)
12. Education, training
13. Research and development
14. Other, spicify
15. Please enter the number $\mathbf{1 - 1 4}$ from question \#26 that 8EST describes the activity in which you spent MOST of your energy-related time.
16. Thank you for completing this questionnaire. Please return the completed form in the enclosed envelope to the National Research Council, JH630, 2101 Constitution Avenue, Washington, D.C. 20418.

MATHEMATICAL
sciences
000 - Algetr .
010 - Analys.s \& Functional Analysis 020 - Geometry
030 - Lo:̧ic (see alsu 834)
040 - Number Theory
052 - Probability
055 - Math. Staristics (see also 544, 670, 725, 727)
060 - Topology
062 - Operations Research (see also 478)

085 - Applied Mathematics
089 - Combinatorics \& Finite Mathematics
098 - Methematics, General
099 . Methematics, Other*

COMPUTER AND
INFORMATION SCIENCES
071 . Theory
072 - Software Systems
073 . Hardware Systems
074 - Intelligent Systems
079 - Computer Sciences, Other ${ }^{*}$ (see also 437, 476)
061 - Information Sci. \& Systems ${ }^{*}$

PHYSICS \& ASTRONOMY
101 - Astronomy
102 - Astrophysics
110 - Atomic \& Molecular
120. Electromagnetism

132 . Acoustics
134 - Fluids
135 - Plasma
136. Optics

140-E'ementary Particles
150 - Nuclear Structure
157 - Polymer
160 - Solid State
198 - Physics, General
199 - Physics, Other ${ }^{\circ}$

CHEMISTRY
200. Analytical

210 - Inorganic
215 - Synthetic Inorganic \& Organometallic
220 - Organic
225 - Synthetic Organic \& Natural Products
230 - Nuclear
240 - Physical
250. Theoretical

255 - Structural
260 - Agricultural \& Food
270 - Pharmaceutical
275 - Polymer
280 - Biochemistry (see also 540)
298 - Chemistry. General
299 - Chemistry, Other ${ }^{*}$

EARTH, ENVIRONMENTAL,

 AND MARINE SCIENCES301 - Mineralogy, Petrology
305 - Geochemistry
$310 \cdot$ Stratigraphy, Sedimentation

320 - Paleontology
330 - Structural Gejlogy
341 - Geophysics (Solid Earth)
360 - Geomorph. \& Glecial Geology
2sit - Applicd Geol., Geol. Engr. \& Econ. Geol.
398 - Earth Sciences. General
399 - Earth Sciences, Other ${ }^{*}$
381 - Atmospheric Physics \& Chemistry
382 - Atmospheric Dyılamics
383-Atmos. \& Met viol. Sci., Other*
388 - Environmental Sciencas, General (see also 480, 528)
389 - Environmental Sciences, Other ${ }^{-}$
360 - Hydrology \& Water Resources
370 - Oceanography
397 - Marine Sciences, Other ${ }^{\bullet}$

ENGINEERING

400-Aerospace, Aeronautical \& Astronautical
410 - Agricultural
415 - Bioengineering \& Biomedical
420 . Civil
430. Chemical

435 - Ceramic
436. Communications

437 . Computer
440 - Electrical
445 - Electronics
450 - Industrial \& Manufacturing
455 - Nuclear
460 - Engineering Mechanics
465 - Engineering Physics
470. Mechanical

475 - Metallurgical \& Phys. Met. Engr.
476 - Systems Design \& Systems Science (see also 072, 07, 074)
478 - Operations Research (see also 082)

47\% - Fuel Technology \& Petroleum
480. Sanitary \& Environmental Health

485 - Naval Arch. \& Marine Engr.
486- Mining \& Mineral
487 - Ocean
490 - Polymer
497- Materials Science \& Engineering
498- Engineerr.g, General
499 - Engineering, Other*

AGRICULTURAL SCIENCES

501 - Agricultural Economics
508 - Animal Breeding \& Genetics
509 - Animal Nutrition
512 - Animal Sciences, Other ${ }^{-}$
500 - Agronomy
511 - Plant Path. (see also 553)
513 - Plant Breeding \& Genetics
514 - Plant Sciences, Other*
503 - Food Science and/or Technology (see also 573)
505 - Forestry
506 . Horticulture
507 . Soil Sciences
515 - Fisheries Sciences
516 . Wildife Management
518. Agriculture, Goneral

519 - Agriculture, Other ${ }^{*}$

BiOLOGICAL SCIENI:ES

$540 \cdot$ Biochemistry (see also 230)
542 - Biophysics
550 - Botany
551 - : acteriology
552 - Plant Genetics
553 - Plant Path. (see aiso 511)
567 - Plant Physiology
563 - Human \& Animal Genetics
566 - Human \& Animal Physiology
569 - Zoology
544 - Biometrics \& Biostatisics Isee also 055, 670, 725, 727)
545 - Anatomy
54e Cell Biology
547 - Embryology
548 - Immunology
549 - Endocrinology
560 - Ecology
571 Entomology
572 - Molecular Biology
573 - Food Science and/or Technology (see also 503)
574 - Behavior/Ethnology
575 - Microbiology
576 - Nutrition \& Dietetics
589 - Neurosciences
590 - Toxicology
598- Biological Sciences, General
599 - Biological Sciences, Other*

PSYCHOLOGY
600 : Clinical
603. Cognitive

610 . Counseling \& Guidance
620. Developmental \& Gerontological

630 - Educational
635 . School
641 - Experimental
642 - Comparative
643 . Physiological
650- Industrial/Orgunizational
660 - Personality
670 - Psychometrics (see also 055,
544, 725, 727!
675 - Quantitative
680 - Socia!

698-Psychology, General
699 - Psychology, Other ${ }^{*}$

SOCIAL SCIENCES

700 - Anthropology
703. Archeology

708-Communications
709-Linguistics
710 - Sociology
720 - Economics (see also 501)
725 - Econometrics (see also 055, 544, 670, 727)
727 - Social Statistics (see also 055, 544, 670, 725)
730- Demography
740. Geography

745 - Area Studies ${ }^{\circ}$
751 - Political Sci. \& Governmerıt
752 - Public Administration
753 - Public Policy Studies
755 - International Relation:.
760 - Criminology \& Crimiral Justice
770 - Urban \& Regional Plenning
775 . History \& Philosophy of Sci.
798 - Sccial Sciences, General
799 . Social Sciences, Other ${ }^{*}$

hUMANITIES

804-History, American
805 - History, European
806 - History, Other ${ }^{*}$
811 - American Literature
813. English Language
$814 \cdot$ English Literature
827 - Classics
831 - Speech \& Debate
836. Cemparative Literature

839 - Letiers, Other ${ }^{*}$
821 - German
822 - Russian
823 - French
824 - Spanish \& Portuguese
$826 \cdot$ Italian
829. Other Languages*

802 - Art History \& Criticism
809. Americar. Studies

809 - Theatre \& Theatre Criticism
830 - Music
833 - Religious Studies (see also 881)
834 - Philosophy (see atso 030)
891 - Library \& Archival Sciences
878 - Humanities, General
879 - Humanities, Other ${ }^{*}$

EDUCATION AND

PROFESSIONAL FIELDS
801 - Applied Art
881 - Theology (see also 833)
882 - Business \& Manasement
883 - Home Economics
884 - Jour nalism
886 - Law, Jurisprudence
887 - Social Work
888 - Architec. \& Environ. Design
896 - Professional Fields, General
897 - Professional Fields, Other ${ }^{\bullet}$
$938 \cdot$ Education lother than teaching ine field listed above)
-Identify the specific field in the space on the questionnaire.
899. OTHER FIELDS*

LIST OF FEDERAL SUPPORTING AGENCIES (For use with \# 22)

1. Agency for International Development
2. Environmental Protection Agency
3. National Aeronautics \& Space Adininistration
4. National Endowment for the Arts
5. National Endowment for the Humanities
6. National Science Foundation
7. Nuclear Regulatory Commission

114 8. Smithso nian Institution
9. Department of Agriculture
10. Department of Commerce
11. Department of Defense
12. Department of Energy
13. National Institutes of Health (DHHS)
14. Alcohol, Drug Abuse \& Mental Health Administration (NIAA, NIDA, NIMH)
15. Other DHHS, specify
16. Department of Education (NIE, OE, NCES)
17. Department of Housing and Urban Development
18. Depsitment of tine Interior
19. Departiean' of Justice
20. Department of Labor
21. Department of State
22. Department of Transportation
23. Other ajency or department. specify
24. Don't know source agency

other science resources publications-Con.

NSF No. Price
S/E Personnel
Science and Engineering Doctorates: 1960-86 88-309
Immigrant Scientists and Engineers: 1986. 88-308
Academic Science/Engineering: Graduate Enrollment and Support,Fall 198688-307
\qquad
U.S. Scientists and Engineers: 1986 87-322
\qquad
Characteristics of Recent Science and Engineering Graduates: 1986 87-321

\qquad
Federal Scientists and Engineers: 1986 87-320

\qquad
Reports
R\&D Funds
Federal R\&D Funding by Budget Function: Fiscal Years 1986-88 87-305
\qquad
S/E Personnel
Women and Minorities in Science and Engineering 88-301
Foreign Citizens in U.S. Science and Engineering: History, Status, and Outlook 86-305

\qquad
Revised
Composite
International Science and Technology Data Update 87-319
Science and Technology Data Book 87-317
Project Summaries: FY 1987 87-315
Profiles—Mechanical Engineering: Human Resources and Funding 87-309
Profiles-Chemistry: Human Resources and Funding 87-307
A Guide to NSF Science/Engineering Resources Data 87-305

[^0]:

 * Reproductions supplied by EDRS are the best that can be made from the original document.

[^1]: ${ }^{\text {'Inclu}}$ Indes members of all racial groups.

[^2]: i

 | $\mathrm{ir}_{5}:$ |
 | :--- |
 | C_{5} |

 Governme

[^3]: ${ }^{3}$ Economic Report of the President, op. ctt., p. 280.

[^4]: ${ }^{4}$ Based on National Science Foundation, National Patterns of Science and Technology Resources: 1986 (NSF 86-309)(Washington, D.C., 1986), p. 37.

[^5]: ${ }^{5}$ Economic Report of the Presilent, op. cit.

[^6]: SOURCE: National Science Foundation, SRS; bzzed on unpublished data

[^7]: ${ }^{5}$ For additonal information on doctoral wome. and minority scientists and engineers, see National Science Foundation, Women and Minorities in Science and Engineering (NSF 88-301)(Washington, D.C., January 1988).

[^8]: ${ }^{1}$ For a detailed discussion of changes in sampling rates used throughout this survey series, as well as other technical details of the survey, see Mary Belisle, Methodological Rsport for the 1985 Survey of Doctorate Recipients (Washington, D.C.: Office of Science and Engineering Personnel, National Research Council), April 1987.

[^9]: ${ }^{2}$ Minority status was first introduced in 1975 when it was substituted for "size of doctorate institution" as a stratification variable.
 ${ }^{3}$ Beciause of the increased response rate of U.S. citizens as compared with foreign cittzens/residents, citizenship was introduced as a stratification variable in 1979.
 ${ }^{4}$ Specialties are grouped in fields according to the classification presented in table A-1.

[^10]: ${ }^{5}$ For information on the vanous data collection instruments used throughout this survey series, see National Science Foundation, Characteristics of Doctoral Scientists and Engineers in the Unted States (Detailed Statistical Tables)(Washington, D.C.), biennial senes.

[^11]: ${ }^{6}$ The data and matenal on sampling relasbility presented here are adoped from Methodologicel Report for the 1985 Survey of Doctorate Recipiens, op. cit.

[^12]: ${ }^{7}$ Based upon the ratio of two estimated totals, where the numerator is a subset of the denominator.

[^13]: ${ }^{8}$ The standard error estimates were derived from generalized functions based upon a limited set of characteristics and may overstate the error associated with estimates drawn from strata with high sampling fractions. See Methodological Report for the 1985 Surery of Doctorate Recipients, op. cit.

[^14]: Estimates not shown for groups with tower than 20 respondents or when rolativoity largo standard errors were associated with 90 percent or more of the subpopulation.

[^15]: B-35. Selected employment rates of doctoral scientists and engineers by field, sex, and racial/ ethnic group: 1985 105

[^16]: * 100 REW CASES TO ESTIMATE

[^17]: * TOO FEN CASES TO ESTIMATE

[^18]: * tCO feh cases to rstimate

[^19]: * TOO FEN Cases to estimate

[^20]: * TOO FEW CASES TO ESTIMATE

[^21]: * TOO FEW CASES TO ESTIMATE

[^22]: * TOO FEW CASES TO EStImate

[^23]: * TOO FEN CASES TO ESTIMATE

[^24]: * TOO FEW CASES TO ESTIMATE

[^25]: * tOO gen cases to estimate

[^26]: * TOO FEW CASES TO ESTIMATE

[^27]: * TOO FEH CASES TO ESTIMATE

[^28]: * TOO FEW CASES TO EstImate

[^29]: * TOO FEW CASES TO ESTIMATE

[^30]: * YOO sem CASES TO ESTIMATE

[^31]: * TOO FEU CASES TO ESTIMATE

[^32]: * tOO FEN CASES tO Estimate

[^33]: * TOO PEN CASES TO ESTIMATE

[^34]: * TOO FEH CASES TO ESTIMATE

[^35]: - Temporary appointment in academia, industry or government, the primary purpose of which is to provide for continued education or experience in research.

